期刊论文详细信息
BMC Research Notes
VAN: an R package for identifying biologically perturbed networks via differential variability analysis
Yee Hwa Yang2  Marc R Wilkins1  Graham J Mann2  Sarah-Jane Schramm2  Vivek Jayaswal3 
[1] Systems Biology Initiative, University of New South Wales, Sydney, NSW, Australia;Melanoma Institute Australia, Sydney, NSW, Australia;School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
关键词: Melanoma;    Network modules;    Protein-protein interaction networks;   
Others  :  1141280
DOI  :  10.1186/1756-0500-6-430
 received in 2013-05-21, accepted in 2013-10-18,  发布年份 2013
PDF
【 摘 要 】

Background

Large-scale molecular interaction networks are dynamic in nature and are of special interest in the analysis of complex diseases, which are characterized by network-level perturbations rather than changes in individual genes/proteins. The methods developed for the identification of differentially expressed genes or gene sets are not suitable for network-level analyses. Consequently, bioinformatics approaches that enable a joint analysis of high-throughput transcriptomics datasets and large-scale molecular interaction networks for identifying perturbed networks are gaining popularity. Typically, these approaches require the sequential application of multiple bioinformatics techniques – ID mapping, network analysis, and network visualization. Here, we present the Variability Analysis in Networks (VAN) software package: a collection of R functions to streamline this bioinformatics analysis.

Findings

VAN determines whether there are network-level perturbations across biological states of interest. It first identifies hubs (densely connected proteins/microRNAs) in a network and then uses them to extract network modules (comprising of a hub and all its interaction partners). The function identifySignificantHubs identifies dysregulated modules (i.e. modules with changes in expression correlation between a hub and its interaction partners) using a single expression and network dataset. The function summarizeHubData identifies dysregulated modules based on a meta-analysis of multiple expression and/or network datasets. VAN also converts protein identifiers present in a MITAB-formatted interaction network to gene identifiers (UniProt identifier to Entrez identifier or gene symbol using the function generatePpiMap) and generates microRNA-gene interaction networks using TargetScan and Microcosm databases (generateMicroRnaMap). The function obtainCancerInfo is used to identify hubs (corresponding to significantly perturbed modules) that are already causally associated with cancer(s) in the Cancer Gene Census database. Additionally, VAN supports the visualization of changes to network modules in R and Cytoscape (visualizeNetwork and obtainPairSubset, respectively). We demonstrate the utility of VAN using a gene expression data from metastatic melanoma and a protein-protein interaction network from the Human Protein Reference Database.

Conclusions

Our package provides a comprehensive and user-friendly platform for the integrative analysis of -omics data to identify disease-associated network modules. This bioinformatics approach, which is essentially focused on the question of explaining phenotype with a 'network type’ and in particular, how regulation is changing among different states of interest, is relevant to many questions including those related to network perturbations across developmental timelines.

【 授权许可】

   
2013 Jayaswal et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327020013449.pdf 2448KB PDF download
Figure 3. 172KB Image download
Figure 2. 88KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Ideker T, Krogan NJ: Differential network biology. Mol Syst Biol 2012, 8:1-9.
  • [2]Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007, 5:54-66.
  • [3]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. Bmc Bioinform 2006, 7:S7.
  • [4]Yeung KY, Dombek KM, Lo K, Mittler JE, Zhu J, Schadt EE, Bumgarner RE, Raftery AE: Construction of regulatory networks using expression time-series data of a genotyped population. Proc Natl Acad Sci USA 2011, 108:19436-19441.
  • [5]Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 2009, 27:199-204.
  • [6]Davis MJ, Shin CJ, Jing N, Ragan MA: Rewiring the dynamic interactome. Mol Biosyst 2012, 8:2054-2066.
  • [7]Yao C, Li H, Zhou C, Zhang L, Zou J, Guo Z: Multi-level reproducibility of signature hubs in human interactome for breast cancer metastasis. BMC Syst Biol 2010, 4:151. BioMed Central Full Text
  • [8]Taylor IW, Wrana JL: Protein interaction networks in medicine and disease. Proteomics 2012, 12:1706-1716.
  • [9]Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H: Structure of protein interaction networks and their implications on drug design. PLoS Comput Biol 2009, 5:e1000550.
  • [10]Efron B, Tibshirani R: On testing the significance of sets of genes. Ann Appl Stat 2007, 1:107-129.
  • [11]Barabasi A-L, Gulbahce N, Loscalzo J: Network medicine: a network-based approach to human disease. Nat Rev Genet 2011, 12:56-68.
  • [12]Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430:88-93.
  • [13]Schramm S-J, Jayaswal V, Goel A, Li SS, Yang YH, Mann GJ, Wilkins MR: Molecular interaction networks for the analysis of human disease: utility, limitations, and considerations. Proteomics 2013. Accepted
  • [14]Mathivanan S, Periaswamy B, Gandhi T, Kandasamy K, Suresh S, Mohmood R, Ramachandra Y, Pandey A: An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 2006, 7:S19.
  • [15]De Las RJ, Fontanillo C: Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 2010, 6:e1000807.
  • [16]Koh GCKW, Porras P, Aranda B, Hermjakob H, Orchard SE: Analyzing protein–protein interaction networks. J Proteome Res 2012, 11:2014-2031.
  • [17]Kirouac D, Saez-Rodriguez J, Swantek J, Burke J, Lauffenburger D, Sorger P: Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst Biol 2012, 6:29. BioMed Central Full Text
  • [18]Janjić V, Pržulj N: Biological function through network topology: a survey of the human diseasome. Brief Funct Genomics 2012, 11:522-532.
  • [19]Hong FX, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 2006, 22:2825-2827.
  • [20]Turner B, Razick S, Turinsky AL, Vlasblom J, Crowdy EK, Cho E, Morrison K, Donaldson IM, Wodak SJ: iRefWeb: interactive analysis of consolidated protein interaction data and their supporting evidence. Database 2010, 2010:1-15.
  • [21]Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91-105.
  • [22]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 2005, 120:15-20.
  • [23]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144.
  • [24]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-D158.
  • [25]Fung DCY, Li SS, Goel A, Hong S-H, Wilkins MR: Visualization of the interactome: what are we looking at? Proteomics 2012, 12:1669-1686.
  • [26]Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
  • [27]Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR: A census of human cancer genes. Nat Rev Cancer 2004, 4:177-183.
  • [28]Mann GJ, Pupo GM, Campain AE, Carter CD, Schramm S-J, Pianova S, Gerega SK, De Silva C, Lai K, Wilmott JS, et al.: BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 2013, 133:509-517.
  • [29]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al.: Human protein reference database—2009 update. Nucleic Acids Res 2009, 37:D767-D772.
  • [30]Liu ZP, Wang Y, Zhang XS, Chen L: Network-based analysis of complex diseases. Syst Biol, IET 2012, 6:22-33.
  文献评价指标  
  下载次数:44次 浏览次数:2次