期刊论文详细信息
BMC Research Notes
ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response
Tsuyoshi Miyakawa2  Shigeharu Wakana1  Tamio Furuse1  Satoko Hattori3  Hisatsugu Koshimizu3  Keizo Takao2  Juzoh Umemori3 
[1] Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba, Japan;Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan;Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
关键词: Schizophrenia;    ADHD;    Psychiatric disorder;    Comprehensive behavioral test battery;    ENU-mutagenesis;    Grin1;    NMDA receptor;   
Others  :  1142642
DOI  :  10.1186/1756-0500-6-203
 received in 2012-11-13, accepted in 2013-05-08,  发布年份 2013
PDF
【 摘 要 】

Background

The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests.

Results

There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious deficits in social behaviors in three different social interaction tests.

Conclusions

This study demonstrated that the Grin1Rgsc174/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1Rgsc174/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders.

【 授权许可】

   
2013 Umemori et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328110323348.pdf 726KB PDF download
Figure 8. 25KB Image download
Figure 7. 29KB Image download
Figure 6. 82KB Image download
Figure 5. 76KB Image download
Figure 4. 82KB Image download
Figure 3. 44KB Image download
Figure 2. 83KB Image download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Cull-Candy S, Brickley S, Farrant M: NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 2001, 11:327-335.
  • [2]Masu M, Nakajima Y, Moriyoshi K, Ishii T, Akazawa C, Nakanashi S: Molecular characterization of NMDA and metabotropic glutamate receptors. Ann N Y Acad Sci 1993, 707:153-164.
  • [3]Sucher NJ, Awobuluyi M, Choi Y-B, Lipton SA: NMDA receptors: from genes to channels. Trends Pharmacol Sci 1996, 17:348-355.
  • [4]Tsien JZ, Huerta PT, Tonegawa S: The essential role of hippocampal CA1 NMDA receptor–dependent synaptic plasticity in spatial memory. Cell 1996, 87:1327-1338.
  • [5]Morris RG: Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D- aspartate receptor antagonist AP5. J Neurosci 1989, 9:3040-3057.
  • [6]Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY: Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994, 368:144-147. Published online: 10 March 1994
  • [7]Bliss TVP, Collingridge GL: A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993, 361:31-39. Published online: 07 January 1993
  • [8]Dingledine R, Borges K, Bowie D, Traynelis SF: The glutamate receptor ion channels. Pharmacol Rev 1999, 51:7-62.
  • [9]Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH: Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994, 12:529-540.
  • [10]Goff DC: The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry 2001, 158:1367-1377.
  • [11]Coyle J: Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006, 26:363-382.
  • [12]Kantrowitz JT, Javitt DC: N-methyl-D-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull 2010, 83:108-121.
  • [13]Javitt DC: Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 2010, 47:4-16.
  • [14]Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A: NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996, 14:301-307.
  • [15]Zhao X, Li H, Shi Y, Tang R, Chen W, Liu J, Feng G, Shi J, Yan L, Liu H, He L: Significant association between the genetic variations in the 5′ end of the N-Methyl-D-Aspartate receptor subunit gene GRIN1 and schizophrenia. Biol Psychiatry 2006, 59:747-753.
  • [16]Georgi A, Jamra RA, Klein K, Villela AW, Schumacher J, Becker T, Paul T, Schmael C, Höfels S, Klopp N, Illig T, Propping P, Cichon S, Nöthen MM, Schulze TG, Rietschel M: Possible association between genetic variants at the GRIN1 gene and schizophrenia with lifetime history of depressive symptoms in a German sample. Psychiatr Genet 2007, 17:308-310.
  • [17]Galehdari H: Association between the G1001C polymorphism in the GRIN1 gene promoter and schizophrenia in the Iranian population. J Mol Neurosci 2009, 38:178-181.
  • [18]Demontis D, Nyegaard M, Buttenschøn HN, Hedemand A, Pedersen CB, Grove J, Flint TJ, Nordentoft M, Werge T, Hougaard DM, Sørensen KM, Yolken RH, Mors O, Børglum AD, Mortensen PB: Association of GRIN1 and GRIN2A-D With schizophrenia and genetic interaction with maternal herpes simplex virus-2 infection affecting disease risk. Am J Med Genet B 2011, 156:913-922.
  • [19]Makino C, Shibata H, Ninomiya H, Tashiro N, Fukumaki Y: Identification of single-nucleotide polymorphisms in the human N-methyl-D-aspartate receptor subunit NR2D gene, GRIN2D, and association study with schizophrenia. Psychiatr Genet 2005, 15:215-221.
  • [20]Mundo E, Tharmalingham S, Neves-Pereira M, Dalton EJ, Macciardi F, Parikh SV, Bolonna A, Kerwin RW, Arranz MJ, Makoff AJ, Kennedy JL: Evidence that the N-methyl-D-aspartate subunit 1 receptor gene (GRIN1) confers susceptibility to bipolar disorder. Mol Psychiatr 2003, 8:241-245.
  • [21]Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R, Barr CL, Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R, Barr CL: Association of the glutamate receptor subunit gene GRIN2B with attention‒deficit/hyperactivity disorder, Association of the glutamate receptor subunit gene GRIN2B with attention‒deficit/hyperactivity disorder. Gene Brain Behav 2007, 6:444-452.
  • [22]Mohn AR, Gainetdinov RR, Caron MG, Koller BH: Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999, 98:427-436.
  • [23]Halene TB, Ehrlichman RS, Liang Y, Christian EP, Jonak GJ, Gur TL, Blendy JA, Dow HC, Brodkin ES, Schneider F, Gur RC, Siegel SJ: Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia. Genes Brain Behav 2009, 8:661-675.
  • [24]Duncan GE, Moy SS, Perez A, Eddy DM, Zinzow WM, Lieberman JA, Snouwaert JN, Koller BH: Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behav Brain Res 2004, 153:507-519.
  • [25]Powell CM, Miyakawa T: Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol Psychiatr 2006, 59:1198-1207.
  • [26]Ballard TM, Pauly-Evers M, Higgins GA, Ouagazzal A-M, Mutel V, Borroni E, Kemp JA, Bluethmann H, Kew JNC: Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 2002, 22:6713-6723.
  • [27]Labrie V, Clapcote SJ, Roder JC: Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 2009, 91:610-620.
  • [28]Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JDE: Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study. PNAS 1998, 95:14494-14499.
  • [29]Li B, Devidze N, Barengolts D, Prostak N, Sphicas E, Apicella AJ, Malinow R, Emamian ES: NMDA receptor phosphorylation at a site affected in schizophrenia controls synaptic and behavioral plasticity. J Neurosci 2009, 29:11965-11972.
  • [30]Labrie V, Wang W, Barger SW, Baker GB, Roder JC: Genetic loss of D-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav 2010, 9:11-25.
  • [31]Kew JNC, Koester A, Moreau J-L, Jenck F, Ouagazzal A-M, Mutel V, Richards JG, Trube G, Fischer G, Montkowski A, Hundt W, Reinscheid RK, Pauly-Evers M, Kemp JA, Bluethmann H: Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. J Neurosci 2000, 20:4037-4049.
  • [32]Furuse T, Wada Y, Hattori K, Yamada I, Kushida T, Shibukawa Y, Masuya H, Kaneda H, Miura I, Seno N, Kanda T, Hirose R, Toki S, Nakanishi K, Kobayashi K, Sezutsu H, Gondo Y, Noda T, Yuasa S, Wakana S: Phenotypic characterization of a new Grin1 mutant mouse generated by ENU mutagenesis. Eur J Neurosci 2010, 31:1281-1291.
  • [33]Solanto MV: Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 2002, 130:65-71.
  • [34]Castellanos FX, Tannock R: Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 2002, 3:617-628.
  • [35]Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, Takao K, Tanda K, Ohira K, Toyama K, Kanzaki K, Fukunaga K, Sudo Y, Ichinose H, Ikeda M, Iwata N, Ozaki N, Suzuki H, Higuchi M, Suhara T, Yuasa S, Miyakawa T: Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 2008, 1:6. BioMed Central Full Text
  • [36]Hagihara H, Takao K, Walton N, Matsumoto M, Miyakawa T: Immature dentate gyrus: An endophenotype of neuropsychiatric disorders. Neural Plasticityin press
  • [37]Ohira K, Kobayashi K, Toyama K, Nakamura HK, Shoji H, Takao K, Takeuchi R, Yamaguchi S, Kataoka M, Otsuka S, Takahashi M, Miyakawa T: Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol Brain 2013, 6:12. BioMed Central Full Text
  • [38]Takao K, Kobayashi K, Hagihara H, Ohira K, Shoji H, Hattori S, Koshimizu H, Umemori J, Toyama K, Nakamura HK, Kuroiwa M, Maeda J, Atsuzawa K, Esaki K, Yamaguchi S, Furuya S, Takagi T, Walton NM, Hayashi N, Suzuki H, Higuchi M, Usuda N, Suhara T, Nishi A, Matsumoto M, Ishii S, Miyakawa T: Deficiency of Schnurri-2, an MHC Enhancer Binding Protein, Induces Mild Chronic Inflammation in the Brain and Confers Molecular, Neuronal, and Behavioral Phenotypes Related to Schizophrenia. Neuropsychopharmacology 2013. Epub ahead of print
  • [39]Hattori S, Takao K, Tanda K, Toyama K, Shintani N, Hashimoto H, Miyakawa T: Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci 2012, 6:58.
  • [40]Walton NM, Zhou Y, Kogan JH, Shin R, Webster M, Gross AK, Heusner CL, Chen Q, Miyake S, Tajinda K, Tamura K, Miyakawa T, Matsumoto M: Detection of an immature dentate gyrus feature in human schizophrenia/bipolar patients. Translational Psychiatry 2012, 2:e135.
  • [41]Leonard AS, Bayer K-U, Merrill MA, Lim IA, Shea MA, Schulman H, Hell JW: Regulation of calcium/calmodulin-dependent protein Kinase II docking toN-Methyl-d-aspartate receptors by calcium/calmodulin and α-actinin. J Biol Chem 2002, 277:48441-48448.
  • [42]Holmes A, Yang RJ, Murphy DL, Crawley JN: Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 2001, 27:914-923.
  • [43]McFadyen MP, Kusek G, Bolivar VJ, Flaherty L: Differences among eight inbred strains of mice in motor ability and motor learning on a rotorod. Genes Brain Behav 2003, 2:214-219.
  • [44]Mulligan SJ, Knapp E, Thompson B, Jung R: A method for assessing balance control in rodents. Biomed Sci Instrum 2002, 38:77-82.
  • [45]LeDoux J: The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 2003, 23:727-738.
  • [46]Walker DL, Davis M: Are fear memories made and maintained by the same NMDA receptor-dependent mechanisms? Neuron 2004, 41:680-682.
  • [47]Maren S, Quirk GJ: Neuronal signalling of fear memory. Nat Rev Neurosci 2004, 5:844-852.
  • [48]Fendt M: Injections of the NMDA receptor antagonist aminophosphonopentanoic acid into the lateral nucleus of the amygdala block the expression of fear-potentiated startle and freezing. J Neurosci 2001, 21:4111-4115.
  • [49]Kim JJ, DeCola JP, Landeira-Fernandez J, Fanselow MS: N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav Neurosci 1991, 105:126-133.
  • [50]Gewirtz JC, Davis M: Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 1997, 388:471-474.
  • [51]Shimizu E, Tang YP, Rampon C, Tsien JZ: NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 2000, 290:1170-1174.
  • [52]Cui Z, Wang H, Tan Y, Zaia KA, Zhang S, Tsien JZ: Inducible and reversible NR1 knockout reveals crucial role of the NMDA receptor in preserving remote memories in the brain. Neuron 2004, 41:781-793.
  • [53]Bourin M, Hascoët M: The mouse light/dark box test. Eur J Pharmacol 2003, 463:55-65.
  • [54]Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S: Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci 2003, 100:8987-8992.
  • [55]Holmes A, Parmigiani S, Ferrari P, Palanza P, Rodgers R: Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol Behav 2000, 71:509-516.
  • [56]Keizo T, Tanda K, Toyama K, Shintani N, Hashimoto H, Miyakawa T: Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav Neurosci 2012, 6:58.
  • [57]De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M: Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998, 19:269-301.
  • [58]Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE: Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol 2003, 24:151-180.
  • [59]Silveira MCL, Sandner G, Graeff FG: Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behav Brain Res 1993, 56:115-118.
  • [60]Duncan GE, Knapp DJ, Breese GR: Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Res 1996, 713:79-91.
  • [61]Holmes A, Rodgers RJ: Responses of Swiss–Webster mice to repeated plus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav 1998, 60:473-488.
  • [62]McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R: The use of behavioral test batteries: effects of training history. Physiol Behav 2001, 73:705-717.
  • [63]Boyce-Rustay JM, Holmes A: Ethanol-related behaviors in mice lacking the NMDA receptor NR2A subunit. Psychopharmacology 2006, 187:455-466.
  • [64]Single FN, Rozov A, Burnashev N, Zimmermann F, Hanley DF, Forrest D, Curran T, Jensen V, Hvalby Ø, Sprengel R, Seeburg PH: Dysfunctions in mice by NMDA receptor point mutations NR1(N598Q) and NR1(N598R). J Neurosci 2000, 20:2558-2566.
  • [65]Rudhard Y, Kneussel M, Nassar MA, Rast GF, Annala AJ, Chen PE, Tigaret CM, Dean I, Roes J, Gibb AJ, Hunt SP, Schoepfer R: Absence of Whisker-related pattern formation in mice with NMDA receptors lacking coincidence detection properties and calcium signaling. J Neurosci 2003, 23:2323-2332.
  • [66]Qin S, Zhao X, Pan Y, Liu J, Feng G, Fu J, Bao J, Zhang Z, He L: An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur J Hum Genet 2005, 13:807-814.
  • [67]Tsai G, Coyle JT: Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002, 42:165-179.
  • [68]Goldman-Rakic PS: Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 1994, 6:348-357.
  • [69]Elvevåg B, Goldberg TE: Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 2000, 14:1-21.
  • [70]Hofmann SG: Relationship between panic and schizophrenia. Depress Anxiety 1999, 9:101-106.
  • [71]Turnbull G, Bebbington P: Anxiety and the schizophrenic process: clinical and epidemiological evidence. Soc Psychiatry Psychiatr Epidemiol 2001, 36:235-243.
  • [72]Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D: The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002, 16:2350-2364.
  • [73]Davis M: The role of the amygdala in fear and anxiety. Annu Rev Neurosci 1992, 15:353-375.
  • [74]Falls WA, Carlson S, Turner JG, Willott JF: Fear-potentiated startle in two strains of inbred mice. Behav Neurosci 1997, 111:855-861.
  • [75]Handbook of clinical audiology (5th Ed.) KATZ Jack: Librairie Lavoisier. http://www.lavoisier.fr/livre/notice.asp?ouvrage=1489029 webcite
  • [76]Zheng QY, Johnson KR, Erway LC: Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 1999, 130:94-107.
  • [77]Castellanos FX, Fine EJ, Kaysen D, Marsh WL, Rapoport JL, Hallett M: Sensorimotor gating in boys with Tourette’s syndrome and ADHD: Preliminary results. Biol Psychiatry 1996, 39:33-41.
  • [78]Van Os J, Kapur S: Schizophrenia. Lancet 2009, 374:635-645.
  • [79]Gainetdinov RR, Caron MG: Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 2003, 43:261-284.
  • [80]Takao K, Miyakawa T: Light/dark transition test for mice. J Vis Exp 2006, 1:104.
  • [81]Komada M, Takao K, Miyakawa T: Elevated plus maze for mice. J Vis Exp 2008, 22:e1088.
  • [82]Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T: Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2009, 2:19. BioMed Central Full Text
  • [83]Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN: Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004, 3:287-302.
  • [84]Miyakawa T, Yamada M, Duttaroy A, Wess J: Hyperactivity and Intact Hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 2001, 21:5239-5250.
  • [85]Olton DS, Papas BC: Spatial memory and hippocampal function. Neuropsychologia 1979, 17:669-682.
  • [86]Van der Staay FJ: The study of behavioral dysfunctions : an evaluation of selected animal models. University of Groningen; 2000. http://bibliotheek.eldoc.ub.rug.nl/root/UB/2000/f.j.van.der.staay/ webcite
  • [87]Wang X, Seed B: A PCR primer bank for quantitative gene expression analysis. Nucl Acids Res 2003, 31:e154-e154.
  • [88]Spandidos A, Wang X, Wang H, Dragnev S, Thurber T, Seed B: A comprehensive collection of experimentally validated primers for Polymerase Chain Reaction quantitation of murine transcript abundance. BMC Genomics 2008, 9:633. BioMed Central Full Text
  • [89]Spandidos A, Wang X, Wang H, Seed B: PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 2009, 38:D792-D799.
  文献评价指标  
  下载次数:71次 浏览次数:11次