期刊论文详细信息
BMC Medicine
Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications
Yehuda Shoenfeld2  Miri Blank3  Giorgia Bizzaro3  Tomer Bashi3  Pierre-Yves Jeandel1  Mathilde Versini1 
[1]Department of Internal Medicine, Archet-1 Hospital, University of Nice-Sophia-Antipolis, 151 Route de Saint Antoine de Ginestière, Nice, 06202, France
[2]The Laura Schwarz-Kipp Chair for Research of Autoimmune Diseases, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
[3]The Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel
关键词: Th1;    T-regulatory cells;    Parasite;    Infection;    Hygiene hypothesis;    Helminthes;    Autoimmune disease;    Autoimmunity;    Autoantibodies;    Allergy;   
Others  :  1171053
DOI  :  10.1186/s12916-015-0306-7
 received in 2014-09-25, accepted in 2015-03-02,  发布年份 2015
PDF
【 摘 要 】

Background

The Hygiene Hypothesis (HH) attributes the dramatic increase in autoimmune and allergic diseases observed in recent decades in Western countries to the reduced exposure to diverse immunoregulatory infectious agents. This theory has since largely been supported by strong epidemiological and experimental evidence.

Discussion

The analysis of these data along with the evolution of the Western world’s microbiome enable us to obtain greater insight into microorganisms involved in the HH, as well as their regulatory mechanisms on the immune system. Helminthes and their derivatives were shown to have a protective role. Helminthes’ broad immunomodulatory properties have already begun to be exploited in clinical trials of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and type-1 diabetes.

Summary

In this review, we will dissect the microbial actors thought to be involved in the HH as well as their immunomodulatory mechanisms as emphasized by experimental studies, with a particular attention on parasites. Thereafter, we will review the early clinical trials using helminthes’ derivatives focusing on autoimmune diseases.

【 授权许可】

   
2015 Versini et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150418030128253.pdf 827KB PDF download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Eder W, Ege MJ, von Mutius E: The asthma epidemic. N Engl J Med 2006, 23:2226-35.
  • [2]Bieber T: Atopic dermatitis. N Engl J Med 2008, 358:1483-94.
  • [3]Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G: Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 2009, 373:2027-33.
  • [4]Cosnes J, Gower-Rousseau C, Seksik P, Cortot A: Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011, 140:1785-94.
  • [5]Moroni L, Bianchi I, Lleo A: Geoepidemiology, gender and autoimmune disease. Autoimmun Rev 2012, 11:A386-92.
  • [6]World Health Organization: Atlas: Multiple sclerosis resources in the world 2008. WHO, Geneva; 2008.
  • [7]Costenbader KH, Gay S, Alarcón-Riquelme ME, Iaccarino L, Doria A: Genes, epigenetic regulation and environmental factors: which is the most relevant in developing autoimmune diseases? Autoimmun Rev 2012, 11:604-9.
  • [8]Colafrancesco S, Agmon-Levin N, Perricone C, Shoenfeld Y: Unraveling the soul of autoimmune diseases: pathogenesis, diagnosis and treatment adding dowels to the puzzle. Immunol Res 2013, 56:200-5.
  • [9]Antico A, Tampoia M, Tozzoli R, Bizzaro N: Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev 2012, 12:127-36.
  • [10]Arnson Y, Shoenfeld Y, Amital H: Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 2010, 34:J258-65.
  • [11]Farhat SCL, Silva CA, Orione MAM, Campos LMA, Sallum AME, Braga ALF: Air pollution in autoimmune rheumatic diseases: a review. Autoimmun Rev 2011, 11:14-21.
  • [12]Perricone C, Colafrancesco S, Mazor RD, Soriano A, Agmon-Levin N, Shoenfeld Y: Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: unveiling the pathogenic, clinical and diagnostic aspects. J Autoimmun 2013, 47:1-16.
  • [13]Versini M, Jeandel P-Y, Rosenthal E, Shoenfeld Y: Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev 2014, 13:981-1000.
  • [14]Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, et al.: Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev 2013, 12:726-40.
  • [15]Okada H, Kuhn C, Feillet H, Bach J-F: The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010, 160:1-9.
  • [16]Strachan DP: Hay fever, hygiene, and household size. BMJ 1989, 299:1259-60.
  • [17]Brown EM, Arrieta M-C, Finlay BB: A fresh look at the hygiene hypothesis: how intestinal microbial exposure drives immune effector responses in atopic disease. Semin Immunol 2013, 25:378-87.
  • [18]Bendiks M, Kopp MV: The relationship between advances in understanding the microbiome and the maturing hygiene hypothesis. Curr Allergy Asthma Rep 2013, 13:487-94.
  • [19]Parker W: The “hygiene hypothesis” for allergic disease is a misnomer. BMJ 2014, 348:g5267.
  • [20]Bach J-F: Infections and autoimmune diseases. J Autoimmun 2005, 25:74-80.
  • [21]Saeki Y, Ishihara K: Infection-immunity liaison: pathogen-driven autoimmune-mimicry (PDAIM). Autoimmun Rev 2014, 13:1064-9.
  • [22]Zandman-Goddard G, Shoenfeld Y: Parasitic infection and autoimmunity. Lupus 2009, 18:1144-8.
  • [23]Elliott DE, Weinstock JV: Helminth-host immunological interactions: prevention and control of immune-mediated diseases. Ann N Y Acad Sci 2012, 1247:83-96.
  • [24]Rook GAW: Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 2012, 42:5-15.
  • [25]Greenwood BM: Autoimmune disease and parasitic infections in Nigerians. Lancet 1968, 2:380-2.
  • [26]Greenwood BM, Herrick EM, Voller A: Suppression of autoimmune disease in NZB and (NZB x NZW) F1 hybrid mice by infection with malaria. Nature 1970, 226:266-7.
  • [27]Ball TM, Castro-Rodriguez JA, Griffith KA, Holberg CJ, Martinez FD, Wright AL: Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med 2000, 343:538-43.
  • [28]Benn CS, Melbye M, Wohlfahrt J, Björkstén B, Aaby P: Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life. BMJ 2004, 328:1223.
  • [29]Goldberg S, Israeli E, Schwartz S, Shochat T, Izbicki G, Toker-Maimon O, et al.: Asthma prevalence, family size, and birth order. Chest 2007, 131:1747-52.
  • [30]Nicolaou NC, Simpson A, Lowe LA, Murray CS, Woodcock A, Custovic A: Day-care attendance, position in sibship, and early childhood wheezing: a population-based birth cohort study. J Allergy Clin Immunol 2008, 122:500-6.
  • [31]Strachan DP, Aït-Khaled N, Foliaki S, Mallol J, Odhiambo J, Pearce N, et al.: Siblings, asthma, rhinoconjunctivitis and eczema: a worldwide perspective from the International Study of Asthma and Allergies in Childhood. Clin Exp Allergy 2015, 45:126-36.
  • [32]Pelucchi C, Galeone C, Bach J-F, La Vecchia C, Chatenoud L: Pet exposure and risk of atopic dermatitis at the pediatric age: a meta-analysis of birth cohort studies. J Allergy Clin Immunol 2013, 132:616-22.
  • [33]Nowak D, Heinrich J, Jörres R, Wassmer G, Berger J, Beck E, et al.: Prevalence of respiratory symptoms, bronchial hyperresponsiveness and atopy among adults: west and east Germany. Eur Respir J 1996, 9:2541-52.
  • [34]Heinrich J, Hoelscher B, Frye C, Meyer I, Wjst M, Wichmann HE: Trends in prevalence of atopic diseases and allergic sensitization in children in Eastern Germany. Eur Respir J 2002, 19:1040-6.
  • [35]Crane J, Wickens K: Antibiotics and asthma: a tricky tributary of the hygiene hypothesis. Lancet Respir Med 2014, 2:595-7.
  • [36]Alm B, Goksör E, Pettersson R, Möllborg P, Erdes L, Loid P, et al.: Antibiotics in the first week of life is a risk factor for allergic rhinitis at school age. Pediatr Allergy Immunol 2014, 25:468-72.
  • [37]Wennergren G, Ekerljung L, Alm B, Eriksson J, Lötvall J, Lundbäck B: Asthma in late adolescence–farm childhood is protective and the prevalence increase has levelled off. Pediatr Allergy Immunol 2010, 21:806-13.
  • [38]Solis Soto MT, Patiño A, Nowak D, Radon K: Prevalence of asthma, rhinitis and eczema symptoms in rural and urban school-aged children from Oropeza Province, Bolivia: a cross-sectional study. BMC Pulm Med 2014, 14:40.
  • [39]Cooper PJ, Chico ME, Rodrigues LC, Ordonez M, Strachan D, Griffin GE, et al.: Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 2003, 111:995-1000.
  • [40]Van den Biggelaar AHJ, Rodrigues LC, van Ree R, van der Zee JS, Hoeksma-Kruize YCM, Souverijn JHM, et al.: Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 2004, 189:892-900.
  • [41]Araujo MI, Lopes AA, Medeiros M, Cruz AA, Sousa-Atta L, Solé D, et al.: Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int Arch Allergy Immunol 2000, 123:145-8.
  • [42]Lynch NR, Hagel I, Perez M, Di Prisco MC, Lopez R, Alvarez N: Effect of anthelmintic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol 1993, 92:404-11.
  • [43]Flohr C, Tuyen LN, Lewis S, Quinnell R, Minh TT, Liem HT, et al.: Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: a cross-sectional study. J Allergy Clin Immunol 2006, 118:1305-11.
  • [44]Conradi S, Malzahn U, Schröter F, Paul F, Quill S, Spruth E, et al.: Environmental factors in early childhood are associated with multiple sclerosis: a case–control study. BMC Neurol 2011, 11:123.
  • [45]Hughes A-M, Lucas RM, McMichael AJ, Dwyer T, Pender MP, van der Mei I, et al.: Early-life hygiene-related factors affect risk of central nervous system demyelination and asthma differentially. Clin Exp Immunol 2013, 172:466-74.
  • [46]Bitti PP, Murgia BS, Ticca A, Ferrai R, Musu L, Piras ML, et al.: Association between the ancestral haplotype HLA A30B18DR3 and multiple sclerosis in central Sardinia. Genet Epidemiol 2001, 20:271-83.
  • [47]Sotgiu S, Pugliatti M, Sotgiu A, Sanna A, Rosati G: Does the “hygiene hypothesis” provide an explanation for the high prevalence of multiple sclerosis in Sardinia? Autoimmunity 2003, 36:257-60.
  • [48]Sotgiu S, Sannella AR, Conti B, Arru G, Fois ML, Sanna A, et al.: Multiple sclerosis and anti-Plasmodium falciparum innate immune response. J Neuroimmunol 2007, 185:201-7.
  • [49]Sotgiu S, Angius A, Embry A, Rosati G, Musumeci S: Hygiene hypothesis: innate immunity, malaria and multiple sclerosis. Med Hypotheses 2008, 70:819-25.
  • [50]Seiskari T, Kondrashova A, Viskari H, Kaila M, Haapala A-M, Aittoniemi J, et al.: Allergic sensitization and microbial load–a comparison between Finland and Russian Karelia. Clin Exp Immunol 2007, 148:47-52.
  • [51]Kondrashova A, Seiskari T, Ilonen J, Knip M, Hyöty H: The “Hygiene hypothesis” and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. APMIS 2013, 121:478-93.
  • [52]Elliott DE, Urban JFJR, Argo CK, Weinstock JV: Does the failure to acquire helminthic parasites predispose to Crohn’s disease? FASEB J 2000, 14:1848-55.
  • [53]Fiasse R, Latinne D: Intestinal helminths: a clue explaining the low incidence of inflammatory bowel diseases in Subsaharan Africa? Potential benefits and hazards of helminth therapy. Acta Gastroenterol Belg 2006, 69:418-22.
  • [54]Bodansky HJ, Staines A, Stephenson C, Haigh D, Cartwright R: Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 1992, 304:1020-2.
  • [55]Staines A, Hanif S, Ahmed S, McKinney PA, Shera S, Bodansky HJ: Incidence of insulin dependent diabetes mellitus in Karachi. Pakistan Arch Dis Child 1997, 76:121-3.
  • [56]Leibowitz U, Kahana E, Alter M: The changing frequency of multiple sclerosis in Israel. Arch Neurol 1973, 29:107-10.
  • [57]Detels R, Brody JA, Edgar AH: Multiple sclerosis among American, Japanese and Chinese migrants to California and Washington. J Chronic Dis 1972, 25:3-10.
  • [58]Symmons DP: Frequency of lupus in people of African origin. Lupus 1995, 4:176-8.
  • [59]Panda AK, Ravindran B, Das BK: Rheumatoid arthritis patients are free of filarial infection in an area where filariasis is endemic: comment on the article by Pineda et al. Arthritis Rheum 2013, 65:1402-3.
  • [60]Rook GAW, Raison CL, Lowry CA: Microbial “old friends”, immunoregulation and socioeconomic status. Clin Exp Immunol 2014, 177:1-12.
  • [61]Rook GAW: 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the “hygiene” or “old friends” hypothesis. Clin Exp Immunol 2010, 160:70-9.
  • [62]Dunder T, Tapiainen T, Pokka T, Uhari M: Infections in child day care centers and later development of asthma, allergic rhinitis, and atopic dermatitis: prospective follow-up survey 12 years after controlled randomized hygiene intervention. Arch Pediatr Adolesc Med 2007, 161:972-7.
  • [63]Koloski N-A, Bret L, Radford-Smith G: Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J Gastroenterol 2008, 14:165-73.
  • [64]Yoo J, Tcheurekdjian H, Lynch SV, Cabana M, Boushey HA: Microbial manipulation of immune function for asthma prevention: inferences from clinical trials. Proc Am Thorac Soc 2007, 4:277-82.
  • [65]Ziegelbauer K, Speich B, Mäusezahl D, Bos R, Keiser J, Utzinger J: Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med 2012, 9:e1001162.
  • [66]Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, Jacobson J: Helminth infections: the great neglected tropical diseases. J Clin Invest 2008, 118:1311-21.
  • [67]Murray CJL, Ortblad KF, Guinovart C, Lim SS, Wolock TM, Roberts DA, et al.: Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384:1005-70.
  • [68]Hooper LV, Littman DR, Macpherson AJ: Interactions between the microbiota and the immune system. Science 2012, 336:1268-73.
  • [69]Lee YK, Mazmanian SK: Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 2010, 330:1768-73.
  • [70]Belkaid Y, Hand TW: Role of the microbiota in immunity and inflammation. Cell 2014, 157:121-41.
  • [71]Karczewski J, Poniedziałek B, Adamski Z, Rzymski P: The effects of the microbiota on the host immune system. Autoimmunity 2014, 47:494-504.
  • [72]Huang EY, Devkota S, Moscoso D, Chang EB, Leone VA: The role of diet in triggering human inflammatory disorders in the modern age. Microbes Infect 2013, 15:765-74.
  • [73]Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al.: Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012, 109:8334-9.
  • [74]Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al.: Human gut microbiome viewed across age and geography. Nature 2012, 486:222-7.
  • [75]Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, et al.: Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol 2013, 9:15.
  • [76]Penders J, Gerhold K, Thijs C, Zimmermann K, Wahn U, Lau S, et al.: New insights into the hygiene hypothesis in allergic diseases: mediation of sibling and birth mode effects by the gut microbiota. Gut Microbes 2014, 5:239-44.
  • [77]Maslowski KM, Mackay CR: Diet, gut microbiota and immune responses. Nat Immunol 2011, 12:5-9.
  • [78]Vieira SM, Pagovich OE, Kriegel MA: Diet, microbiota and autoimmune diseases. Lupus 2014, 23:518-26.
  • [79]Manzel A, Muller DN, Hafler DA, Kleinewietfeld M: Role of “Western Diet” in Inflammatory Autoimmune Diseases. Curr Allergy Asthma Rep 2014, 14:404.
  • [80]De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al.: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010, 107:14691-6.
  • [81]Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ, et al.: Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One 2013, 8:e80201.
  • [82]Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al.: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010, 107:11971-5.
  • [83]Kuo C-H, Kuo H-F, Huang C-H, Yang S-N, Lee M-S, Hung C-H: Early life exposure to antibiotics and the risk of childhood allergic diseases: an update from the perspective of the hygiene hypothesis. J Microbiol Immunol Infect 2013, 46:320-9.
  • [84]Zeissig S, Blumberg RS: Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol 2014, 15:307-10.
  • [85]Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR: A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 2008, 38:629-33.
  • [86]Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al.: Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia 2008, 51:726-35.
  • [87]Nielsen NM, Bager P, Stenager E, Pedersen BV, Koch-Henriksen N, Hjalgrim H, et al.: Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study. Mult Scler 2013, 19:1473-7.
  • [88]Decker E, Engelmann G, Findeisen A, Gerner P, Laass M, Ney D, et al.: Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 2010, 125:e1433-40.
  • [89]Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF: Pregnancy outcome and risk of celiac disease in offspring: a nationwide case–control study. Gastroenterology 2012, 142:39-45.
  • [90]McSorley HJ, Maizels RM: Helminth infections and host immune regulation. Clin Microbiol Rev 2012, 25:585-608.
  • [91]Weinstock JV: Autoimmunity: the worm returns. Nature 2012, 491:183-5.
  • [92]Ben-Ami Shor D, Harel M, Eliakim R, Shoenfeld Y: The hygiene theory harnessing helminths and their ova to treat autoimmunity. Clin Rev Allergy Immunol 2013, 45:211-6.
  • [93]Zaccone P, Cooke A: Vaccine against autoimmune disease: can helminths or their products provide a therapy? Curr Opin Immunol 2013, 25:418-23.
  • [94]Maizels RM, McSorley HJ, Smyth DJ: Helminths in the hygiene hypothesis: sooner or later? Clin Exp Immunol 2014, 171:38-46.
  • [95]Shor DB-A, Shoenfeld Y: Autoimmunity: will worms cure rheumatoid arthritis? Nat Rev Rheumatol 2013, 9:138-40.
  • [96]Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989, 7:145-73.
  • [97]Annunziato F, Romagnani S: Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther 2009, 11:257.
  • [98]Gause WC, Urban JF, Stadecker MJ: The immune response to parasitic helminths: insights from murine models. Trends Immunol 2003, 24:269-77.
  • [99]Bettelli E, Oukka M, Kuchroo VK: T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007, 8:345-50.
  • [100]Singh RP, Hasan S, Sharma S, Nagra S, Yamaguchi DT, Wong D, et al. Th17 cells in inflammation and autoimmunity. Autoimmun Rev. 2014. Ahead of print.
  • [101]Sakaguchi S: Regulatory T, cells: key controllers of immunologic self-tolerance. Cell 2000, 101:455-8.
  • [102]Hawrylowicz CM, O’Garra A: Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 2005, 5:271-83.
  • [103]Kim JM, Rasmussen JP, Rudensky AY: Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007, 8:191-7.
  • [104]Sofronic-Milosavljevic L, Radovic I, Ilic N, Majstorovic I, Cvetkovic J, Gruden-Movsesijan A: Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol 2010, 32:450-9.
  • [105]Elliott DE, Metwali A, Leung J, Setiawan T, Blum AM, Ince MN, et al.: Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production. J Immunol 2008, 181:2414-9.
  • [106]Wu Z, Nagano I, Asano K, Takahashi Y: Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response. Parasitol Res 2010, 107:1173-88.
  • [107]Osada Y, Shimizu S, Kumagai T, Yamada S, Kanazawa T: Schistosoma mansoni infection reduces severity of collagen-induced arthritis via down-regulation of pro-inflammatory mediators. Int J Parasitol 2009, 39:457-64.
  • [108]Pineda MA, McGrath MA, Smith PC, Al-Riyami L, Rzepecka J, Gracie JA, et al.: The parasitic helminth product ES-62 suppresses pathogenesis in collagen-induced arthritis by targeting the interleukin-17-producing cellular network at multiple sites. Arthritis Rheum 2012, 64:3168-78.
  • [109]Saunders KA, Raine T, Cooke A, Lawrence CE: Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 2007, 75:397-407.
  • [110]Hübner MP, Stocker JT, Mitre E: Inhibition of type 1 diabetes in filaria-infected non-obese diabetic mice is associated with a T helper type 2 shift and induction of FoxP3+ regulatory T cells. Immunology 2009, 127:512-22.
  • [111]Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, et al.: Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol 2003, 33:1439-49.
  • [112]Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A: Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. Eur J Immunol 2009, 39:1098-107.
  • [113]Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, et al.: The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4+ T cells. Eur J Immunol 2011, 41:2709-18.
  • [114]McInnes IB, Leung BP, Harnett M, Gracie JA, Liew FY, Harnett W: A novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J Immunol 2003, 171:2127-33.
  • [115]Hübner MP, Shi Y, Torrero MN, Mueller E, Larson D, Soloviova K, et al.: Helminth protection against autoimmune diabetes in nonobese diabetic mice is independent of a type 2 immune shift and requires TGF-β. J Immunol 2012, 188:559-68.
  • [116]Torres-Aguilar H, Blank M, Jara LJ, Shoenfeld Y: Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun Rev 2010, 10:8-17.
  • [117]Diebold SS: Determination of T-cell fate by dendritic cells. Immunol Cell Biol 2008, 86:389-97.
  • [118]Pulendran B, Tang H, Manicassamy S: Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 2010, 11:647-55.
  • [119]White RR, Artavanis-Tsakonas K: How helminths use excretory secretory fractions to modulate dendritic cells. Virulence 2012, 3:668-77.
  • [120]Everts B, Smits HH, Hokke CH, Yazdanbakhsh M: Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. Eur J Immunol 2010, 40:1525-37.
  • [121]Sofronic-Milosavljevic LJ, Radovic I, Ilic N, Majstorovic I, Cvetkovic J, Gruden-Movsesijan A: Application of dendritic cells stimulated with Trichinella spiralis excretory-secretory antigens alleviates experimental autoimmune encephalomyelitis. Med Microbiol Immunol 2013, 202:239-49.
  • [122]Hang L, Setiawan T, Blum AM, Urban J, Stoyanoff K, Arihiro S, et al.: Heligmosomoides polygyrus infection can inhibit colitis through direct interaction with innate immunity. J Immunol 2010, 185:3184-9.
  • [123]Blum AM, Hang L, Setiawan T, Urban JP, Stoyanoff KM, Leung J, et al.: Heligmosomoides polygyrus bakeri induces tolerogenic dendritic cells that block colitis and prevent antigen-specific gut T cell responses. J Immunol 2012, 189:2512-20.
  • [124]Khan AR, Amu S, Saunders SP, Fallon PG: The generation of regulatory B cells by helminth parasites. Methods Mol Biol 2014, 1190:143-62.
  • [125]Van der Vlugt LEPM, Zinsou JF, Ozir-Fazalalikhan A, Kremsner PG, Yazdanbakhsh M, Adegnika AA, et al.: Interleukin 10 (IL-10)-producing CD1dhi regulatory B cells from schistosoma haematobium-infected individuals induce IL-10-positive T cells and suppress effector T-cell cytokines. J Infect Dis 2014, 210:1207-16.
  • [126]Kalampokis I, Yoshizaki A, Tedder TF: IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther 2013, 15:S1.
  • [127]Yang M, Rui K, Wang S, Lu L: Regulatory B cells in autoimmune diseases. Cell Mol Immunol 2013, 10:122-32.
  • [128]Rodgers DT, Pineda MA, McGrath MA, Al-Riyami L, Harnett W, Harnett MM: Protection against collagen-induced arthritis in mice afforded by the parasitic worm product, ES-62, is associated with restoration of the levels of interleukin-10-producing B cells and reduced plasma cell infiltration of the joints. Immunology 2014, 141:457-66.
  • [129]Wilson MS, Taylor MD, O’Gorman MT, Balic A, Barr TA, Filbey K, et al.: Helminth-induced CD19 + CD23hi B cells modulate experimental allergic and autoimmune inflammation. Eur J Immunol 2010, 40:1682-96.
  • [130]Sattler S, Ling G-S, Xu D, Hussaarts L, Romaine A, Zhao H, et al.: IL-10-producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun 2014, 50:107-22.
  • [131]Correale J, Farez M, Razzitte G: Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 2008, 64:187-99.
  • [132]Sica A, Mantovani A: Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012, 122:787-95.
  • [133]Herbert DR, Hölscher C, Mohrs M, Arendse B, Schwegmann A, Radwanska M, et al.: Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity 2004, 20:623-35.
  • [134]Taylor MD, Harris A, Nair MG, Maizels RM, Allen JE: F4/80+ alternatively activated macrophages control CD4+ T cell hyporesponsiveness at sites peripheral to filarial infection. J Immunol 2006, 176:6918-27.
  • [135]Jang SW, Cho MK, Park MK, Kang SA, Na B-K, Ahn SC, et al.: Parasitic helminth cystatin inhibits DSS-induced intestinal inflammation via IL-10(+)F4/80(+) macrophage recruitment. Korean J Parasitol 2011, 49:245-54.
  • [136]Spits H, Cupedo T: Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 2012, 30:647-75.
  • [137]Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al.: Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 2013, 13:145-9.
  • [138]McSorley HJ, Blair NF, Smith KA, McKenzie AN, Maizels RM: Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal Immunol 2014, 7:1068-78.
  • [139]Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, Cox LM, et al.: Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl Trop Dis 2014, 8:e2880.
  • [140]Walk ST, Blum AM, Ewing SA-S, Weinstock JV, Young VB: Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm Bowel Dis 2010, 16:1841-9.
  • [141]Khan WI, Blennerhasset PA, Varghese AK, Chowdhury SK, Omsted P, Deng Y, et al.: Intestinal nematode infection ameliorates experimental colitis in mice. Infect Immun 2002, 70:5931-7.
  • [142]Elliott DE, Li J, Blum A, Metwali A, Qadir K, Urban JF, et al.: Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol 2003, 284:G385-91.
  • [143]Moreels TG, Nieuwendijk RJ, De Man JG, De Winter BY, Herman AG, Van Marck EA, et al.: Concurrent infection with Schistosoma mansoni attenuates inflammation induced changes in colonic morphology, cytokine levels, and smooth muscle contractility of trinitrobenzene sulphonic acid induced colitis in rats. Gut 2004, 53:99-107.
  • [144]Hunter MM, Wang A, Hirota CL, McKay DM: Neutralizing anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol 2005, 174:7368-75.
  • [145]Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie ANJ, van Rooijen N, et al.: Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 2007, 178:4557-66.
  • [146]Mo H, Liu W, Lei J, Cheng Y, Wang C, Li Y: Schistosoma japonicum eggs modulate the activity of CD4+ CD25+ Tregs and prevent development of colitis in mice. Exp Parasitol 2007, 116:385-9.
  • [147]Motomura Y, Wang H, Deng Y, El-Sharkawy RT, Verdu EF, Khan WI: Helminth antigen-based strategy to ameliorate inflammation in an experimental model of colitis. Clin Exp Immunol 2009, 155:88-95.
  • [148]McKay DM: The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 2010, 137:385-94.
  • [149]Summers RW, Elliott DE, Qadir K, Urban JF, Thompson R, Weinstock JV: Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003, 98:2034-41.
  • [150]Summers RW, Elliott DE, Urban JF, Thompson R, Weinstock JV: Trichuris suis therapy in Crohn’s disease. Gut 2005, 54:87-90.
  • [151]Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV: Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 2005, 128:825-32.
  • [152]Sandborn WJ, Elliott DE, Weinstock J, Summers RW, Landry-Wheeler A, Silver N, et al.: Randomised clinical trial: the safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment Pharmacol Ther 2013, 38:255-63.
  • [153]Lu L, Nanus M, Forman S. Coronado biosciences announces top-line results from its TRUST-I phase 2 clinical trial of TSO for the treatment of Crohn’s disease. http://globenewswire.com/news-release/2013/10/14/580190/10052399/en/Coronado-Biosciences-Announces-Top-Line-Results-From-Its-TRUST-I-Phase-2-Clinical-Trial-of-TSO-for-the-Treatment-of-Crohn-s-Disease.html.
  • [154]Wammes LJ, Mpairwe H, Elliott AM, Yazdanbakhsh M: Helminth therapy or elimination: epidemiological, immunological, and clinical considerations. Lancet Infect Dis 2014, 14:1150-62.
  • [155]Croese J, O’Neil J, Masson J, Cooke S, Melrose W, Pritchard D, et al.: A proof of concept study establishing Necator americanus in Crohn’s patients and reservoir donors. Gut 2006, 55:136-7.
  • [156]Mortimer K, Brown A, Feary J, Jagger C, Lewis S, Antoniak M, et al.: Dose-ranging study for trials of therapeutic infection with Necator americanus in humans. Am J Trop Med Hyg 2006, 75:914-20.
  • [157]Kuijk LM, Klaver EJ, Kooij G, van der Pol SMA, Heijnen P, Bruijns SCM, et al.: Soluble helminth products suppress clinical signs in murine experimental autoimmune encephalomyelitis and differentially modulate human dendritic cell activation. Mol Immunol 2012, 51:210-8.
  • [158]La Flamme AC, Ruddenklau K, Bäckström BT: Schistosomiasis decreases central nervous system inflammation and alters the progression of experimental autoimmune encephalomyelitis. Infect Immun 2003, 71:4996-5004.
  • [159]Reyes JL, Espinoza-Jiménez AF, González MI, Verdin L, Terrazas LI: Taenia crassiceps infection abrogates experimental autoimmune encephalomyelitis. Cell Immunol 2011, 267:77-87.
  • [160]Sewell D, Qing Z, Reinke E, Elliot D, Weinstock J, Sandor M, et al.: Immunomodulation of experimental autoimmune encephalomyelitis by helminth ova immunization. Int Immunol 2003, 15:59-69.
  • [161]Walsh KP, Brady MT, Finlay CM, Boon L, Mills KHG: Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses. J Immunol 2009, 183:1577-86.
  • [162]Zhu B, Trikudanathan S, Zozulya AL, Sandoval-Garcia C, Kennedy JK, Atochina O, et al.: Immune modulation by Lacto-N-fucopentaose III in experimental autoimmune encephalomyelitis. Clin Immunol 2012, 142:351-61.
  • [163]Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L: Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol 2008, 118:641-7.
  • [164]Zheng X, Hu X, Zhou G, Lu Z, Qiu W, Bao J, et al.: Soluble egg antigen from Schistosoma japonicum modulates the progression of chronic progressive experimental autoimmune encephalomyelitis via Th2-shift response. J Neuroimmunol 2008, 194:107-14.
  • [165]Correale J, Farez M: Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 2007, 61:97-108.
  • [166]Correale J, Farez MF: The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 2011, 233:6-11.
  • [167]Fleming JO, Isaak A, Lee JE, Luzzio CC, Carrithers MD, Cook TD, et al.: Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler 2011, 17:743-54.
  • [168]Fleming JO: Helminth therapy and multiple sclerosis. Int J Parasitol 2013, 43:259-74.
  • [169]Pineda MA, Al-Riyami L, Harnett W, Harnett M: Themed issue 2014: lessons from helminth infections: ES-62 highlights new interventional approaches in rheumatoid arthritis. Clin Exp Immunol 2014, 177:13-23.
  • [170]Harnett W, Worms MJ, Kapil A, Grainger M, Parkhouse RM: Origin, kinetics of circulation and fate in vivo of the major excretory-secretory product of Acanthocheilonema viteae. Parasitology 1989, 99:229-39.
  • [171]Harnett MM, Kean DE, Boitelle A, McGuiness S, Thalhamer T, Steiger CN, et al.: The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis. Ann Rheum Dis 2008, 67:518-23.
  • [172]Pineda MA, Rodgers DT, Al-Riyami L, Harnett W, Harnett MM: ES-62 protects against collagen-induced arthritis by resetting Interleukin-22 toward resolution of inflammation in the joints. Arthritis Rheumatol (Hoboken, NJ). 2014, 66:1492-503.
  • [173]Al-Riyami L, Pineda MA, Rzepecka J, Huggan JK, Khalaf AI, Suckling CJ, et al.: Designing anti-inflammatory drugs from parasitic worms: a synthetic small molecule analogue of the Acanthocheilonema viteae product ES-62 prevents development of collagen-induced arthritis. J Med Chem 2013, 56:9982-10002.
  • [174]Shi M, Wang A, Prescott D, Waterhouse CCM, Zhang S, McDougall JJ, et al.: Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis Rheum 2011, 63:434-44.
  • [175]Carranza F, Falcón CR, Nuñez N, Knubel C, Correa SG, Bianco I, et al.: Helminth antigens enable CpG-activated dendritic cells to inhibit the symptoms of collagen-induced arthritis through Foxp3+ regulatory T cells. PLoS One 2012, 7:e40356.
  • [176]Song X, Shen J, Wen H, Zhong Z, Luo Q, Chu D, et al.: Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: a murine model of human rheumatoid arthritis. PLoS One 2011, 6:e23453.
  • [177]Salinas-Carmona MC, de la Cruz-Galicia G, Pérez-Rivera I, Solís-Soto JM, Segoviano-Ramirez JC, Vázquez AV, et al.: Spontaneous arthritis in MRL/lpr mice is aggravated by Staphylococcus aureus and ameliorated by Nippostrongylus brasiliensis infections. Autoimmunity 2009, 42:25-32.
  • [178]Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, et al.: Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol 1999, 21:169-76.
  • [179]Zaccone P, Burton OT, Gibbs S, Miller N, Jones FM, Dunne DW, et al.: Immune modulation by Schistosoma mansoni antigens in NOD mice: effects on both innate and adaptive immune systems. J Biomed Biotechnol 2010, 2010:795210.
  • [180]Liu Q, Sundar K, Mishra PK, Mousavi G, Liu Z, Gaydo A, et al.: Helminth infection can reduce insulitis and type 1 diabetes through CD25- and IL-10-independent mechanisms. Infect Immun 2009, 77:5347-58.
  • [181]Imai S, Tezuka H, Fujita K: A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. Biochem Biophys Res Commun 2001, 286:1051-8.
  • [182]Wang B, Geng YB, Wang CR: CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J Exp Med 2001, 194:313-20.
  • [183]Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A, Pascoe A, et al.: Effect of hookworm infection on wheat challenge in celiac disease–a randomised double-blinded placebo controlled trial. PLoS One 2011, 6:e17366.
  • [184]McSorley HJ, Gaze S, Daveson J, Jones D, Anderson RP, Clouston A, et al.: Suppression of inflammatory immune responses in celiac disease by experimental hookworm infection. PLoS One 2011, 6:e24092.
  • [185]Miyake K, Adachi K, Watanabe M, Sasatomi Y, Ogahara S, Abe Y, et al.: Parasites alter the pathological phenotype of lupus nephritis. Autoimmunity 2014, 47:538-47.
  • [186]Nagayama Y, Watanabe K, Niwa M, McLachlan SM, Rapoport B: Schistosoma mansoni and alpha-galactosylceramide: prophylactic effect of Th1 Immune suppression in a mouse model of Graves’ hyperthyroidism. J Immunol 2004, 173:2167-73.
  • [187]Atochina O, Harn D: Prevention of psoriasis-like lesions development in fsn/fsn mice by helminth glycans. Exp Dermatol 2006, 15:461-8.
  • [188]Ben-Ami Shor D, Bashi T, Lachnish J, Fridkin M, Bizzaro G, Barshak I, et al.: Phosphorylcoline-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease. J Autoimmun 2015, 56:111-7.
  文献评价指标  
  下载次数:12次 浏览次数:29次