期刊论文详细信息
BMC Infectious Diseases
High content live cell imaging for the discovery of new antimalarial marine natural products
Karine G Le Roch1  Julia Kubanek3  William Aalbersberg5  Mark E Hay3  Young Tae-Chang2  David Carter4  Michael Cervantes1  Matthew Bruton1  Sebastian Engel6  Jacques Prudhomme1  Paige E Stout6  Serena Cervantes1 
[1] Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA;Agency for Science, Technology and Research (A*STAR), Biopolis 138667, Singapore;School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA;Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA;Institute of Applied Sciences, University of the South Pacific, Suva, Fiji;School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
关键词: High-throughput screening;    Antimalarial;    Natural products;    Drug screening;    Plasmodium falciparum;   
Others  :  1175489
DOI  :  10.1186/1471-2334-12-1
 received in 2011-06-22, accepted in 2012-01-03,  发布年份 2012
PDF
【 摘 要 】

Background

The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum.

Methods

A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.

Results

Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.

Conclusion

Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.

【 授权许可】

   
2011 Cervantes et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150428032641576.pdf 445KB PDF download
Figure 5. 38KB Image download
Figure 4. 76KB Image download
Figure 3. 180KB Image download
Figure 2. 36KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Organization WH: World Malaria Report. Geneva, Switzerland, 2009 2009.
  • [2]JE H: Drug-resistant malaria. Trends Parasitol 2005, 21(11):494-498.
  • [3]White NJ: Qinghaosu (Artemisinin): The Price of Success. Science 2008, 320:330-334.
  • [4]Noedl H, Youry Se, Schaecher K, Smith BL, Socheat D, Fukuda MM, the Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium: Evidence of Artemisinin-Resistant Malaria in Western Cambodia. N Engl J Med 2008, 359:2619-2620.
  • [5]Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrián F, Matzen JT, Anderson P, Nam TG, Gray NS, Chatterjee A, Janes J, Yan SF, Trager R, Caldwell JS, Schultz PG, Zhou Y, Winzeler EA: In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci USA 2008, 105(26):9059-9064.
  • [6]Weisman JL, Liou AP, Shelat AA, Cohen FE, Guy RK, DeRisi JL: Searching for new antimalarial therapeutics amongst known drugs. Chem Biol Drug Des 2006, 67(6):409-416.
  • [7]Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson DC, Connelly M, Clark J, Zhu F, Jiménez-Díaz MB, Martinez MS, Wilson EB, Tripathi AK, Gut J, Sharlow ER, Bathurst I, El Mazouni F, Fowble JW, Forquer I, McGinley PL, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal PJ, Derisi JL, Sullivan DJ, Lazo JS, Roos DS, Riscoe MK, Phillips MA, Rathod PK, Van Voorhis WC, Avery VM, Guy RK: Chemical genetics of Plasmodium falciparum. Nature 2010, 465(7296):311-315.
  • [8]Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S, Brown JR, Peishoff CE, Cardon LR, Garcia-Bustos JF: Thousands of chemical starting points for antimalarial lead identification. Nature 2010, 465(7296):305-310.
  • [9]Desjardins RE, Canfield CJ, Haynes D, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a Semiautomated Microdilution Technique. Antimicrob Agents Chemother 1979, 16(6):710-718.
  • [10]Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M: Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 2004, 48(5):1803-1806.
  • [11]Johnson JD, Denull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC: Assessment and continued validation of the malaria SYBR Green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemothery 2007, 51(6):1926-1933.
  • [12]Corbett Y, Herrera L, Gonzalez J, Cubilla L, Capson TL, Coley PD, Kursar TA, Romero LI, Ortega-Barria E: A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity. Am J Trop Med Hyg 2004, 70(2):119-124.
  • [13]Baniecki ML, Wirth DF, Clardy J: High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 2007, 51(2):716-723.
  • [14]Ku MJ, Dossin FM, Choi Y, Moraes CB, Ryu J, Song R, Freitas-Junior LH: Quantum dots: a new tool for anti-malarial drug assays. Malar J 2011, 10:118. BioMed Central Full Text
  • [15]Lucumi E, Darling C, Jo H, Napper AD, Chandramohanadas R, Fisher N, Shone AE, Jing H, Ward SA, Biagini GA, Degrado WF, Diamond SL, Greenbaum DC: Discovery of potent small molecule inhibitors of multi-drug resistant P. falciparum using a novel miniaturized high-throughput luciferase-based assay. Antimicrob Agents Chemother 2010.
  • [16]Buchholz K, Burke TA, Williamson KC, Wiegand RC, Wirth DF, Marti M: A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J Infect Dis 2011, 203(10):1445-1452.
  • [17]Cervantes S, Prudhomme J, Carter D, Gopi KG, Li Q, Chang YT, Le Roch KG: High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery. BMC Cell Biology 2009, 10:45. BioMed Central Full Text
  • [18]Lane AL, Kubanek J: Secondary metabolite defenses against pathogens and biofoulers. In Algal Chemical Ecology. Edited by Amsler CD. Springer-Verlag, Berlin; 2008:229-243.
  • [19]Engel S, Jensen PR, Fenical W: Chemical ecology of marine microbial defense. J Chem Ecol 2002, 28(10):1971-1985.
  • [20]Kubanek JPAC, Snell TW, Giese RA, Hardcastle K, Fairchild C, Aalbersberg W, Raventos-Suarez C, Hay ME: Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. Org Lett 2005, 7:5261-5264.
  • [21]Stout EP, Hasemeyer AP, Lane AL, Davenport T, Engel S, Hay ME, Fairchild CR, Prudhomme J, Le Roch K, Aalbersberg W, Kubanek J: Antibacterial neurymenolides from the Fijian red alga Neurymenia fraxinifolia. Org Lett 2009, 11:225-228.
  • [22]Trager W, Jensen JB: Human malaria parasites in continuous culture. Science 1976, 193(4254):673-675.
  • [23]Lambros C, Vanderberg JP: Synchronization of Plasmodium falciparum erthrocytic stages in culture. J Parasitol 1979, 65(3):418-420.
  • [24]Suwalsky M, Kuhajda FP, Villena F, Sotomayor CP: Effects of lithium of the human erythrocyte membrane and molecular models. Biophys Chem 2007, 129:36-42.
  • [25]Brecher G, Bessis M: Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: a critical review. Blood 1972, 40(3):333-344.
  • [26]Rosenthal PJ: Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol 1995, 80(2):272-281.
  • [27]Lin AS, Stout EP, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Aalbersberg W, Hay ME, Kubanek J: Bioactive bromophycolides R-U from the Fijian red alga Callophycus serratus. J Nat Prod 2010, 73(2):275-278.
  • [28]Lane AL, Stout EP, Lin AS, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Hay ME, Aalbersberg W, Kubanek J: Antimalarial bromophycolides J-Q from the Fijian red alga Callophycus serratus. J Org Chem 2009, 3(74(7)):2736-2742.
  • [29]Kubanek J, Prusak AC, Snell TW, Giese RA, Fairchild CR, Aalbersberg W, Hay ME: Bromophycolides C-I from the Fijian red alga Callophycus serratus. J Nat Prod 2006, 69(5):731-735.
  • [30]Wells TN, Duffy PE: When is enough enough? The need for a robust pipeline of high-quality antimalarials. Discovery Med 2010, 9(48):389-398.
  • [31]Stout EP, Cervantes S, Prudhomme J, France S, La Clair JJ, Le Roch K, Kubanek J: Bromophycolide a targets heme crystallization in the human malaria parasite Plasmodium falciparum. ChemMEDChem 2011, 6(9):1572-1577.
  文献评价指标  
  下载次数:42次 浏览次数:13次