期刊论文详细信息
BMC Genomics
Organellar genomes of the four-toothed moss, Tetraphis pellucida
Jaakko Hyvönen2  Brent D Mishler3  Jeffrey L Boore1  Neil E Bell2 
[1] Department of Integrative Biology, University of California Berkeley, 1005 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA;Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland;Department of Integrative Biology and University and Jepson Herbaria, University of California, 1001 Valley Life Sciences Bldg, Berkeley, CA 94720-2465, USA
关键词: Sequencing;    Organellar genomes;    Phylogeny;    petN;    nad7;    Peristome;    Tetraphis pellucida;    Moss;   
Others  :  1217215
DOI  :  10.1186/1471-2164-15-383
 received in 2013-10-30, accepted in 2014-05-08,  发布年份 2014
PDF
【 摘 要 】

Background

Mosses are the largest of the three extant clades of gametophyte-dominant land plants and remain poorly studied using comparative genomic methods. Major monophyletic moss lineages are characterised by different types of a spore dehiscence apparatus called the peristome, and the most important unsolved problem in higher-level moss systematics is the branching order of these peristomate clades. Organellar genome sequencing offers the potential to resolve this issue through the provision of both genomic structural characters and a greatly increased quantity of nucleotide substitution characters, as well as to elucidate organellar evolution in mosses. We publish and describe the chloroplast and mitochondrial genomes of Tetraphis pellucida, representative of the most phylogenetically intractable and morphologically isolated peristomate lineage.

Results

Assembly of reads from Illumina SBS and Pacific Biosciences RS sequencing reveals that the Tetraphis chloroplast genome comprises 127,489 bp and the mitochondrial genome 107,730 bp. Although genomic structures are similar to those of the small number of other known moss organellar genomes, the chloroplast lacks the petN gene (in common with Tortula ruralis) and the mitochondrion has only a non-functional pseudogenised remnant of nad7 (uniquely amongst known moss chondromes).

Conclusions

Structural genomic features exist with the potential to be informative for phylogenetic relationships amongst the peristomate moss lineages, and thus organellar genome sequences are urgently required for exemplars from other clades. The unique genomic and morphological features of Tetraphis confirm its importance for resolving one of the major questions in land plant phylogeny and for understanding the evolution of the peristome, a likely key innovation underlying the diversity of mosses. The functional loss of nad7 from the chondrome is now shown to have occurred independently in all three bryophyte clades as well as in the early-diverging tracheophyte Huperzia squarrosa.

【 授权许可】

   
2014 Bell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705093055411.pdf 1119KB PDF download
Figure 3. 103KB Image download
Figure 2. 108KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Newton AE, Wikström N, Bell NE, Forrest LL, Ignatov MS: Dating the diversification of the pleurocarpous mosses. In Pleurocarpous Mosses: Systematics and Evolution. Edited by Newton AE, Tangney RS. Boca Raton: CRC Press; 2007:337-366.
  • [2]Philibert H: De l’importance du péristome pour les affinities naturelles des mousses. Rev Bryologique 1884, 11:49-52. 65–72
  • [3]Fleischer M: Die Musci der Flora Buitenzorg. Volume 4. Leiden: EJ Brill; 1923.
  • [4]Cox CJ, Goffinet B, Wickett NJ, Boles SB, Shaw AJ: Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 2010, 9:175-195.
  • [5]Volkmar U, Knoop V: Introducing intron locus cox1i624 for phylogenetic analyses in bryophytes: on the issue of Takakia as sister genus to all other extant mosses. J Mol Evol 2010, 70:506-518.
  • [6]Newton AE, Cox CJ, Duckett JG, Wheeler JA, Goffinet B, Hedderson AJ, Mishler BD: Evolution of the major moss lineages: phylogenetic analysis based on multiple gene sequences and morphology. Bryologist 2000, 103:187-211.
  • [7]Magombo ZLK: The phylogeny of basal peristomate mosses: evidence from cpDNA, and implications for peristome evolution. Syst Bot 2003, 28:24-38.
  • [8]Cox CJ, Hedderson TA: Phylogenetic relationships among the ciliate arthrodontous mosses: evidence from chloroplast and nuclear DNA sequences. Plant Syst Evol 1999, 215:119-139.
  • [9]Ligrone R, Duckett JG: Morphology versus molecules in moss phylogeny: new insights (or controversies) from placental and vascular anatomy in Oedipodium griffithianum. Plant Syst Evol 2011, 296:275-282.
  • [10]Cox CJ, Goffinet B, Shaw AJ, Boles SB: Phylogenetic relationships among the mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst Bot 2004, 29:234-250.
  • [11]Hyvönen J, Hedderson TA, Smith Merrill GL, Gibbings JG, Koskinen S: On phylogeny of the Polytrichales. Bryologist 1998, 101:489-504.
  • [12]Hyvönen J, Koskinen S, Smith Merrill GL, Hedderson TA, Stenroos S: Phylogeny of the Polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol Phylogenet Evol 2004, 31:915-928.
  • [13]Bell NE, Hyvönen J: Rooting the Polytrichopsida: the Phylogenetic Position of Atrichopsis and the Independent Origin of the Polytrichopsid Peristome. In Bryology in the New Millennium. Edited by Mohamed H, Baki BB, Nasrulhaq-Boyce A, Lee PKY. Kuala Lumpur: University of Malaya; 2008:227-239.
  • [14]Shaw AJ, Anderson LE: Peristome development in mosses in relation to systematics and evolution. II. Tetraphis pellucida (Tetraphidaceae). Am J Bot 1988, 75:1019-1032.
  • [15]Bell NE, Hyvönen J: Phylogeny of the moss class Polytrichopsida (BRYOPHYTA): generic-level structure and incongruent gene trees. Mol Phylogenet Evol 2010, 55:381-398.
  • [16]Shaw AJ, Renzaglia K: Phylogeny and diversification of bryophytes. Am J Bot 2004, 91:1557-1581.
  • [17]Shaw AJ, Anderson LE, Mishler BD: Peristome development in mosses in relation to systematics and evolution. I. Diphyscium foliosum (Buxbaumiaceae). Mem NY Bot Gard 1987, 45:55-70.
  • [18]de Pinna MCC: Concepts and tests of homology in the cladistics paradigm. Cladistics 1991, 7:367-394.
  • [19]Boore JL, Brown WM: Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 1998, 8:668-674.
  • [20]Kelch DG, Driskell A, Mishler BD: Inferring phylogeny using genomic characters: a case study using land plant plastomes. In Molecular Systematics of Bryophytes [Monographs in Systematic Botany 98]. Edited by Goffinet B, Hollowell V, Magill R. St. Louis: Missouri Botanical Garden Press; 2004:3-12.
  • [21]Mishler BD: The logic of the data matrix in phylogenetic analysis. In Parsimony, Phylogeny, and Genomics. Edited by Albert VA. Oxford New York: University Press; 2005:57-70.
  • [22]Mishler BD, Kelch DG: Phylogenomics and early land plant evolution. In Bryophyte Biology. 2nd edition. Edited by Shaw AJ, Goffinet B. New York: Cambridge University Press; 2009:173-197.
  • [23]Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M: Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucl Acids Res 2003, 31:5324-5331.
  • [24]Oliver MJ, Murdock AG, Mishler BD, Kuehl JV, Boore JL, Mandoli DF, Everett KDE, Wolf PG, Duffy AM, Karol KG: Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. BMC Genomics 2010, 11:143. BioMed Central Full Text
  • [25]Shimamura M, Sadamitsu A, Yamaguchi T, Deguchi H: Chloroplast genome structure of a primitive moss, Sphagnum palustre (Bryophyta): DNA sequencing and direct observation of single molecules [abstract]. In XVIII International Botanical Congress, Melbourne, Australia, 23–30 July 2011, Abstracts. Melbourne; 2011:641-642.
  • [26]Terasawa K, Odahara M, Kabeya Y, Kikugawa T, Sekine Y, Fujiwara M, Sato N: The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol Biol Evol 2007, 24:699-709.
  • [27]Liu Y, Xue J-Y, Wang B, Li L, Qiu Y-L: The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution. PLoS ONE 2011, 6:e25836.
  • [28]Liu Y, Medina R, Goffinet B: The evolution of mitochondrial genomes in mosses. [abstract]. New Orleans, LA, USA: Botany; 2013. 0006: Abstract ID:559
  • [29]Jansen RK, Ruhlman TA: Plastid genomes of seed plants. In Genomics of Chloroplasts and Mitochondria, Advances in Photosynthesis and Respiration 35. Edited by Bock R, Knoop V. Dordrecht: Springer; 2012:103-126.
  • [30]Goffinet B, Wickett NJ, Werner O, Ros RM, Shaw AJ, Cox CJ: Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Ann Bot - London 2007, 99:747-753.
  • [31]Goffinet B, Wickett NJ, Shaw AJ, Cox CJ: Phylogenetic significance of the rpoA loss in the chloroplast genome of mosses. Taxon 2005, 54:353-360.
  • [32]Lenz H, Knoop V: PREPACT 2.0: predicting C-to-U and U-to-C RNA editing in organelle genome sequences with multiple references and curated RNA editing annotation. Bioinform Biol Insights 2013, 7:1-19.
  • [33]Liu Y, Wang B, Cui P, Li L, Xue J-Y, Yu J, Qiu Y-L: The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants. PLoS ONE 2012, 4:e35168.
  • [34]Yura K, Miyata Y, Arikawa T, Higuchi M, Sugita M: Characteristics and prediction of RNA editing sites in transcripts of the moss Takakia lepidozioides chloroplast. DNA Res 2008, 15:309-321.
  • [35]Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K: RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 2003, 31:2417-2423.
  • [36]Miyata Y, Sugiura C, Kobayashi Y, Hagiwara M, Sugita M: Chloroplast ribosomal S14 protein transcript is edited to create a translation initiation codon in the moss Physcomitrella patens. Biochim Biophys Acta 2002, 1576:346-349.
  • [37]Rüdinger M, Funk HT, Rensing SA, Maier UG, Knoop V: RNA editing: only eleven sites are present in the Physcomitrella patens mitochondrial transcriptome and a universal nomenclature proposal. Mol Genet Genomics 2009, 281:473-481.
  • [38]Groth-Malonek M, Wahrmund U, Polsakiewicz M, Knoop V: Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae. Mol Biol Evol 2007, 24:1068-1074.
  • [39]Xue J-Y, Liu Y, Li L, Wang B, Qiu Y-L: The complete mitochondrial genome sequence of the hornwort Phaeoceros laevis: retention of many ancient pseudogenes and conservative evolution of mitochondrial genomes in hornworts. Curr Genet 2010, 56:53-61.
  • [40]Li L, Wang B, Liu Y, Qiu Y-L: The Complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J Mol Evol 2009, 68:665-678.
  • [41]Pruchner D, Nassal B, Schindler M, Knoop V: Mosses share mitochondrial group II introns with flowering plants, not with liverworts. Mol Genet Genomics 2001, 266:608-613.
  • [42]He-Nygrén X, Juslén A, Ahonen I, Glenny D, Piippo S: Illuminating the evolutionary history of liverworts (Marchantiophyta) – towards a natural classification. Cladistics 2006, 22:1-31.
  • [43]Crandall-Stotler B, Stotler RE, Long DG: Phylogeny and classification of the Marchantiophyta. Edinb J Bot 2009, 66:155-198.
  • [44]Kobayashi Y, Knoop V, Fukuzawa H, Brennicke A, Ohyama K: Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol Gen Genet 1997, 256:589-592.
  • [45]Wahrmund U, Groth-Malonek M, Knoop V: Tracing plant Mitochondrial DNA evolution: rearrangements of the ancient mitochondrial gene cluster trnA-trnT-nad7 in liverwort phylogeny. J Mol Evol 2008, 66:621-629.
  • [46]Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P: Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 2005, 280:25994-26001.
  • [47]Liu Y, Budke J, Goffinet B: Phylogenetic inference rejects sporophyte based classification of the Funariaceae (Bryophyta): rapid radiation suggests rampant homoplasy in sporophyte evolution. Mol Phylogenet Evol 2012, 62:130-145.
  • [48]Eldredge N, Gould SJ: Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology. Edited by Schopf TJM. San Francisco: Freeman Cooper; 1972:82-115.
  • [49]Oliveira DCSG, Raychoudhury R, Lavrov DV, Werren JH: Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp Nasonia (Hymenoptera: Pteromalidae). Mol Biol Evol 2008, 25:2167-2180.
  • [50]Shao R, Campbell NJH, Barker SC: Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Mol Biol Evol 2001, 18:858-865.
  • [51]Xiao J-H, Jia J-G, Murphy RW, Huang D-W: Rapid evolution of the mitochondrial genome in chalcidoid wasps (Hymenoptera: Chalcidoidea) driven by parasitic lifestyles. PLoS ONE 2011, 6:e 26645.
  • [52]Beckert S, Steinhauser S, Muhle H, Knoop V: A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 1999, 218:179-192.
  • [53]Quandt D, Bell NE, Stech M: Unravelling the knot: the Pulchrinodaceae fam. nov. (Bryales). Beih Nova Hedwigia 2007, 131:21-39.
  • [54]Bell NE, Quandt D, O’Brien TJ, Newton AE: Taxonomy and phylogeny in the earliest diverging pleurocarps: square holes and bifurcating pegs. Bryologist 2007, 110:533-560.
  • [55]Edwards S: Homologies and Inter-relationships of Moss Peristomes. In New Manual of Bryology Vol. 2. Edited by Schuster RM. Nichinan: The Hattori Botanical Laboratory; 1984:658-695.
  • [56]Goffinet B, Buck WR: Systematics of the Bryophyta (mosses): from molecules to a revised classification. In Molecular Systematics of Bryophytes [Monographs in Systematic Botany 98]. Edited by Goffinet B, Hollowell V, Magill R. St. Louis: Missouri Botanical Garden Press; 2004:205-239.
  • [57]Rogers SO, Bendich AJ: Extraction of total cellular DNA from plants, algae and fungi. In Plant Molecular Biology Manual. Edited by Gelvin SB, Schilperoot RA. London: Kluwer Academic Publishers; 2004:D1,1-8.
  • [58]Kugita AK, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K: The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nuc Acids Res 2003, 31:716-721.
  • [59]Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [60]Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M: MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 2008, 18(1):188-196.
  文献评价指标  
  下载次数:43次 浏览次数:9次