期刊论文详细信息
BMC Musculoskeletal Disorders
T 1ρ magnetic resonance imaging quantification of early articular cartilage degeneration in a rabbit model
Meng Chen1  Fei Wang1  Jing Zhang1  Hao Wang2  Si Shen1 
[1] Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;Pain Clinic, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
关键词: Histology;    Proteoglycan;    Early cartilage degeneration;    Magnetic resonance imaging;    T1ρ;   
Others  :  1233980
DOI  :  10.1186/s12891-015-0810-0
 received in 2015-09-05, accepted in 2015-11-10,  发布年份 2015
PDF
【 摘 要 】

Background

Osteoarthritis (OA) is a serious problem in the recent aging society, and early diagnosis and intervention of articular cartilage degeneration are very important for the onset of OA. Therefore, development of newer MRI techniques is necessary and expected for detection of early articular cartilage degeneration.

Methods

24 rabbits were randomly divided into four equal experimental groups (Group A, B, C, D) to establish articular cartilage models in different grades of early degeneration by injecting papain into the left knee joint cavity. Another 8 rabbits were considered as blank control (Group E), and then randomized into four subgroups (E A , E B , E C , E D ). T and T 2 -weighted images of the bilateral knee joints were obtained for rabbits by using 3.0 T MRI. Group A, B, C, and D were imaged respectively at 1, 2, 3, and 4 weeks post-operation, and E A , E B , E C , E Dunderwent the same period imaging. Rabbits were sacrificed after scanning and the femoral condyle cartilage (FCC) was histological examined. T values of the femoral condyle cartilage were measured and statistically analyzed, and contrasted with the histologic results.

Results

T values of the left side in experimental groups were significantly higher than the right side (P < 0.05), and which increased gradually with the passage of post-operation time (P < 0.05). Histological examination demonstrated the proteoglycan content of the left side decreased, and indicated the occurrence of early degeneration.

Conclusions

T MRI can sensitively and quantitatively reflect the change in proteoglycans prior to the morphologic alterations of articular cartilage, and T value is gradually increased with a decrease in proteoglycan content, therefore that T could potentially act as a reliable tool to identify early cartilage degeneration.

【 授权许可】

   
2015 Shen et al.

【 预 览 】
附件列表
Files Size Format View
20151125023932612.pdf 2228KB PDF download
Fig. 8. 36KB Image download
Fig. 7. 28KB Image download
Fig 6. 22KB Image download
Fig. 5. 56KB Image download
Fig. 4. 38KB Image download
Fig. 3. 67KB Image download
Fig. 2. 23KB Image download
Fig. 1. 23KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Dieppe PA, Lohmander LS. Pathogenesis and management of pain in osteoarthritis. Lancet. 2005; 365:965-973.
  • [2]Choi JA, Gold GE. MR Imaging of Articular Cartilage Physiology. Magn Reson Imaging Clin N Am. 2011; 19:249-282.
  • [3]Quaia E, Toffanin R, Guglielmi G, Ukmar M, Rossi A, Martinelli B et al.. Fast T2 mapping of the patellar articular cartilage with gradient and spin-echo magnetic resonance imaging at 1.5 T: validation and initial clinical experience in patients with osteoarthritis. Skeletal Radiol. 2008; 37:511-517.
  • [4]Hunter DJ, Felson DT. Osteoarthritis. Br Med J. 2006; 332:639-642.
  • [5]Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010; 26:355-369.
  • [6]Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA et al.. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II Arthritis Rheum. 2008; 58:26-35.
  • [7]Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009; 11:227. BioMed Central Full Text
  • [8]Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK et al.. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I Arthritis Rheum. 2008; 58:15-25.
  • [9]Souza RB. Stehling C, Wyman BT, Hellio Le Graverand MP, Li X, Link TM, et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage. 2010; 18:1557-1563.
  • [10]Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis. 2011.
  • [11]Wang Y, Guo Y, Zhang L, Niu H, Xu M, Zhao B et al.. Ultrasound biomicroscopy for the detection of early osteoarthritis in an animal model. Acad Radiol. 2011; 18:167-173.
  • [12]Wheaton AJ, Dodge GR, Borthakur A, Kneeland JB, Schumacher HR, Reddy R. Detection of changes in articular cartilage proteoglycan by T 1ρ magnetic resonance imaging. J Orthop Res. 2005; 23:102-108.
  • [13]Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T 1ρ relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T 1ρ with T2. J Magn Reson Imaging. 2006; 23:547-553.
  • [14]Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL et al.. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005; 434:644-648.
  • [15]Hardingham T. Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr Rheumatol Rep. 2008; 10:30-36.
  • [16]Zarins ZA, Bolbos RI, Pialat JB, Link TM, Li X, Souza RB et al.. Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthritis Cartilage. 2010; 18:1408-1416.
  • [17]Mäkelä HI, Gröhn OH, Kettunen MI, Kauppinen RA. Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions. Biochem Biophys Res Commun. 2001; 289:813-818.
  • [18]Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater. 2007; 13:76-86.
  • [19]Hirose J, Nishioka H, Okamoto N, Oniki Y, Nakamura E, Yamashita Y et al.. Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T 1ρ mapping evaluation and 1-year follow-up. Am J Sports Med. 2013; 41:2353-2361.
  • [20]Jungmann PM, Baum T, Bauer JS, Karampinos DC, Erdle B, Link TM, et al. Cartilage repair surgery: outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques. Biomed Res Int. 2014; doi:. 10. 1155/2014/840170 webcite
  • [21]Nestrasil I, Michaeli S, Liimatainen T, Rydeen CE, Kotz CM, Nixon JP et al.. T 1ρ  and T 2ρ  MRI in the evaluation of Parkinson’s disease. J Neurol. 2010; 257:964-968.
  • [22]Zobel BB, Vadalà G, Del Vescovo R, Battisti S, Martina FM, Stellato L et al.. T 1ρ magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine (Phila Pa 1976). 2012; 37:1224-1230.
  • [23]Menezes NM, Gray ML, Hartke JR, Burstein D. T 2  and T 1ρ  MRI in articular cartilage systems. Magnet Reson Med. 2004; 51:503-509.
  • [24]Keenan KE, Besier TF, Pauly JM, Han E, Rosenberg J, Smith RL et al.. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthritis Cartilage. 2011; 19:171-179.
  • [25]Li X, Cheng J, Lin K, Saadat E, Bolbos RI, Jobke B et al.. Quantitative MRI using T 1ρ and T 2 in human osteoarthritic cartilage specimens: correlation with biochemical measurements and histology. Magn Reson Imaging. 2011; 29:324-334.
  • [26]Kim T, Min BH, Yoon SH, Kim H, Park S, Lee HY et al.. An in vitro comparative study of T2 and T2* mappings of human articular cartilage at 3-Tesla MRI using histology as the standard of reference. Skeletal Radiol. 2014; 43:947-954.
  • [27]Peers SC, Maerz T, Baker EA, Shetty A, Xia Y, Puwal S et al.. T 1ρ magnetic resonance imaging for detection of early cartilage changes in knees of asymptomatic collegiate female impact and nonimpact athletes. Clin J Sport Med. 2014; 24:218-225.
  • [28]Havdrup T, Telhag H. Papain-induced changes in the knee joints of adult rabbits. Acta Orthop Scand. 1977; 48:143-149.
  • [29]Liu S, Shen S, Zhu T, Liang W, Huang L, Chen H et al.. Gadolinium-enhanced magnetic resonance imaging of the knee: an experimental approach. Skeletal Radiol. 2010; 39:885-890.
  • [30]Laurent D, Wasvary J, O’Byrne E, Rudin M. In vivo qualitative assessments of articular cartilage in the rabbit knee with high-resolution MRI at 3 T. Magnet Reson Med. 2003; 50:541-549.
  • [31]Kim SB, Kwon DR, Kwak H, Shin YB, Han HJ, Lee JH et al.. Additive effects of intra-articular injection of growth hormone and hyaluronic acid in rabbit model of collagenase-induced osteoarthritis. J Korean Med Sci. 2010; 25:776-780.
  • [32]Klohnen A, Wilson DG, Hendrickson DA, Cooley AJ, MacWilliams PS. Effects of potentiated chlorhexidine on bacteria and tarsocrural joints in ponies. Am J Vet Res. 1996; 57:756-761.
  • [33]Link TM, Steinbach LS, Ghosh S, Ries M, Lu Y, Lane N et al.. Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology. 2003; 226:373-381.
  • [34]Cicuttini F, Forbes A, Asbeutah A, Morris K, Stuckey S. Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res. 2000; 18:580-584.
  • [35]Potter HG, Foo LF. Magnetic resonance imaging of articular cartilage. Am J Sports Med. 2006; 34:661-677.
  • [36]Gold GE, Mosher TJ. New MRI techniques for osteoarthritis. In: Arthritis in color. Advanced imaging of arthritis. Bruno MA, Mosher TJ, Gold GE, editors. Philadelphia: Saunders; 2009. p. 153–192.
  • [37]Hunziker EB. Biologic repair of articular cartilage: Defect models in experimental animals and matrix requirements. Clin Orthop Relat Res. 1999; 367 Suppl:135-146.
  • [38]Borrelli J, Burns ME, Ricci WM, Silva MJ. A method for delivering variable impact stresses to the articular cartilage of rabbit knees. J Orthop Trauma. 2002; 16:182-188.
  文献评价指标  
  下载次数:1次 浏览次数:13次