| BMC Evolutionary Biology | |
| A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment | |
| Todd H Oakley1  Frederick G Hochberg3  Molly S Pankey1  Annie R Lindgren2  | |
| [1] Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA;Present Address: Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA;Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol Rd, Santa Barbara, CA, 93105, USA | |
| 关键词: Phylogeny; Morphology; Correlated traits; Convergent evolution; Cephalopoda; | |
| Others : 1140669 DOI : 10.1186/1471-2148-12-129 |
|
| received in 2012-03-21, accepted in 2012-07-05, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology.
Results
Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively.
Discussion
Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.
【 授权许可】
2012 Lindgren et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325075126817.pdf | 825KB | ||
| Figure 2. | 90KB | Image | |
| Figure 1. | 117KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Carrol R: Vertebrate Paleontology and Evolution. W.H. Freeman and Company, New York; 1988.
- [2]Bell MA: Lateral plate evolution in the threespine stickleback: getting nowhere fast. Genetica 2001, 112–113:445-461.
- [3]Bell MA, Orti G, Walker JA, Koenings JP: Evolution of Pelvic Reduction in Threespine Stickleback Fish: A Test of Competing Hypotheses. Evolution 1993, 47:906-914.
- [4]Shapiro MD, Summers BR, Balabhadra S, Aldenhoven JT, Miller AL, Cunningham CB, Bell MA, Kingsley DM: The Genetic Architecture of Skeletal Convergence and Sex Determination in Ninespine Sticklebacks. Curr Biol 2009, 19:1140-1145.
- [5]Mobley KB, Lussetti D, Johansson F, Englund G, Bokma F: Morphological and genetic divergence in Swedish postglacial stickleback (Pungitius pungitius) populations. BMC Evol Biol 2011, 11:287. BioMed Central Full Text
- [6]Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang H, Pollen AA, Howes T, Amemiya C, Lander ES, Palma FD, Lindblad-Toh K, Kingsley DM, Team BIGSP& WGA: The genomic basis of adaptive evolution in threespine sticklebacks. Nature 2012, 484:55-61.
- [7]Chen L, DeVries AL, Cheng CC: Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. PNAS 1997, 94:3811-3816.
- [8]Herring PJ: Bioluminescent signals and the role of reflectors. J. Optics A-Pure and App. Optics 2000, 2:R29-R38.
- [9]Widder EA: Bioluminesence. In Adaptive Mechanisms in the Ecology of Vision. Kluwer Academic Publishers, Dordrecht, the Netherlands; 1999:555-581.
- [10]Haddock SHD, Moline MA, Case JF: Bioluminescence in the Sea. Ann. Rev. Mar. Sci. 2010, 2:443-493.
- [11]Donley JM, Sepulveda CA, Konstantinidis P, Gemballa S, Shadwick RE: Convergent evolution in mechanical design of lamnid sharks and tunas. Nature 2004, 429:61-65.
- [12]Childress JJ: Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evol. 1995, 10:30-36.
- [13]Seibel BA, Carlini DB: Metabolism of pelagic cephalopods as a function of habitat depth: a reanalysis using phylogenetically independent contrasts. Biol Bull 2001, 201:1-5.
- [14]McFall-Ngai MJ: Crypsis in the pelagic environment. Am. Zool. 1990, 30:175-188.
- [15]Hanlon RT, Messenger JB: Cephalopod Behavior. Cambridge University Press, Cambridge; 1996.
- [16]Packard A: Cephalopods and fish: The limits of convergence. Biol Rev 1972, 47:241-307.
- [17]Finn JK, Tregenza T, Norman MK: Defensive tool use in a coconut-carrying octopus. Current Biol. 2009, 19:R1069-R1070.
- [18]Hanlon RT, Chiao CC, Mäthger LM, Barbosa A, Buresch KC, Chubb C: Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philos. Trans. R. Soc. London B 2009, 364:429-437.
- [19]Norman M, Finn JK, Tregenza T: Dynamic mimicry in an Indo-Malayan octopus. Proc. R. Soc. London B 2001, 268:1755-1758.
- [20]Nesis A: Cephalopods of the World. T.F.H Publications, New Jersey; 1982.
- [21]Strugnell JM, Nishiguchi MK: Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) inferred from three mitochondrial and six nuclear loci: a comparison of alignment, implied alignment and analysis methods. J. Moll. Stud. 2007, 73:399-410.
- [22]Lindgren AR, Giribet G, Nishiguchi MK: A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 2004, 20:454-486.
- [23]Strugnell JM, Norman M, Jackson J, Drummond AJ, Cooper A: Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Mol. Phylogenet. Evol. 2005, 37:426-441.
- [24]Lindgren AR: Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid order Oegopsida. Mol. Phylogenet. Evol. 2010, 56:77-90.
- [25]Allcock L, Cooke IR, Strugnell JM: What can the mitochondrial genome reveal about higher-level phylogeny of the molluscan class Cephalopoda? Zool. J. Linnean Soc. 2011, 161:563-586.
- [26]Naef A: Die Cephalopoden. Fauna e flora del Golfo di Napoli. Israel Programs for Scientific Translations, Jerusalem; 1923:1.
- [27]Young RE, Vecchione M: Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. Am. Malacological Bull. 1996, 12:91-112.
- [28]Norman MK, Hochberg FG: The current state of octopus taxonomy. Phuket Mar. Biol. Cent. Res. Bull 2005, 66:127-154.
- [29]Whitfield JB, Lockhart PJ: Deciphering ancient rapid radiations. Trends Ecol. Evol. 2007, 22:258-265.
- [30]Young RE, Vecchione M, Donovan D: The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 1998, 20:393-420.
- [31]Kröger B, Servais T, Zhang Y: The origin and initial rise of pelagic cephalopods in the Ordovician. PLoS One 2009, 4:e7262.
- [32]Bloodgood R: Squid accessory nidamental gland – ultrastructure and association with bacteria. Tissue and Cell 1977, 9:197-208.
- [33]Naef A: Die Cephalopoden. Embryologie. Amerind Publishing Company, New Dehli; 1928:2.
- [34]Fidiopiastis P, Boletzky SV, Ruby EG: A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol 1998, 180:59-64.
- [35]McFall-Ngai MJ, Montgomery M: The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol Bull 1990, 179:332-339.
- [36]Herring PJ: Luminescent organs. In The Mollusca. 11th edition. Edited by Wilbur KM. Academic, San Diego; 1988:449-485.
- [37]Coddington JA: Review of: The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Cladistics 1985, 1:102-107.
- [38]Harvey PH, Pagel MD: The Comparative Method in Evolutionary Biology. Oxford University Press, London; 1991.
- [39]Martins EP: Adaptation and the comparative method. Trends Ecol. Evol. 2000, 15:296-299.
- [40]Westoby M, Leishman MR, Lord JM: On misinterpreting the phylogenetic correction. J Ecol 2007, 83:531-553.
- [41]Price T: Correlated evolution and independent contrasts. Philos. Trans. R. Soc. London Ser. B 1997, 352:519-552.
- [42]Baum DA, Larson A: A phylogenetic methodology for studying character macroevolution. Syst. Zool. 1991, 40:1-28.
- [43]Leroi AM, Rose MR, Lauder GV: What does the comparative method reveal about adaptation? Am. Nat. 1994, 143:381-402.
- [44]Monnet C, Baets K, Klug C: Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 2011, 11:115. BioMed Central Full Text
- [45]Voss GL: Evolution and phylogenetic relationships of deep-sea octopods (Cirrata and Incirrata). In The Mollusca: Paleontology and neontology of cephalopods. Academ, London; 1988:12.
- [46]Voight JR: Cladistic analysis of the octopods based on morphological characters. J. Moll. Stud. 1997, 63:311-325.
- [47]Carlini DB, Graves JE: Phylogenetic analysis of cytochrome c oxidase subunit I sequences to determine higher-level relationships within the coleoid cephalopods. Bull Mar Sci 1999, 64:57-76.
- [48]Carlini DB, Young RE, Vecchione M: A molecular phylogeny of Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Molec. Phylogenet. Evol. 2001, 21:388-397.
- [49]Bonnaud L, Boucher-Rodoni R, Monnerott M: Relationship of some coleoid cephalopods established by 3’ end of the 16 S rDNA and cytochrome oxidase III gene sequence comparison. Am. Malacological Bull. 1996, 12:87-90.
- [50]Bonnaud L, Boucher-Rodoni R, Monnerott M: Phylogeny of cephalopods inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 1997, 7:44-54.
- [51]Akasaki T, Nikaido K, Tsuchiya K, Segawa S, Hasegawa M, Okada N: Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Mol. Phylogenet. Evol. 2006, 38:648-658.
- [52]Yokobori S, Fukuda N, Nakamura M, Aoyama T, Oshima T: Long-term conservation of six duplicated structural genes in cephalopod mitochondrial genomes. Mol Biol Evol 2004, 21:2034-2046.
- [53]Yokobori S, Lindsay M, Yoshida M, Tsuchiya K, Yamagashi A, Maruyama T, Oshima T: Mitochondrial genome structure and evolution in the living fossil vampire squid, Vampyroteuthis infernalis, and extant cephalopods. Mol. Phylogenet. Evol. 2007, 44:898-910.
- [54]Strugnell JM, Rogers AD, Prodöhl PA, Collins MA, Allcock AL: The thermohaline expressway: the Southern Ocean as a centre of origin for deep‒sea octopuses. Cladistics 2008, 24:853-860.
- [55]Berthold T, Engeser T: Phylogenetic analysis and systematization of the Cephalopoda (Mollusca). Verh. Naturwiss. Ver. Hamburg 1987, 29:187-220.
- [56]Vecchione M, Young RE, Donovan DT, Rodhouse PG: Reevaluation of coleoid cephalopod relationships based on modified arms in the Jurassic coleoid Mastigophora. Lethaia 1999, 32:113-118.
- [57]Carlini DB, Reece KB, Graves JE: Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 2000, 17(9):1353-1370.
- [58]Bonnaud L, Saihi A, Boucher-Rodoni R: Are 28s rDNA and 18s rDNA informative for cephalopod phylogeny? Bull Mar Sci 2002, 71(1):197-208.
- [59]Lindgren AR, Daly M: The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda). Cladistics 2007, 23:464-476.
- [60]Jereb P, Roper CFE: Cephalopods of the World. An annotated and illustrated catalogue of cephalopod species known to date: Chambered nautiluses and sepioids. In FAO Species Catalogue for Fisheries Purposes. Food and Agriculture Organization of the United Nations, Rome; 2005:1.
- [61]Seibel BA, Hochberg FG, Carlini DB: Life history of Gonatus onyx (Cephalopoda: Teuthoidea): deep-sea spawning and post-spawning egg care. Mar Biol 2000, 137:519-526.
- [62]Zylinski S, Johnsen S: Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Current Biol. 2011, 21:1937-1941.
- [63]Boletzky S: Embryonic development of cephalopods at low temperatures. Antarct Sci 1994, 6:139-142.
- [64]Voight JR, Grehan AJ: Egg brooding by deep-sea octopuses in the North Pacific Ocean. Biol Bull 2000, 198:94-100.
- [65]Bekendorff K, Davis AR, Brenner JB: Chemical defense in the egg massess of benthic invertebrates: an assessment of antibacterial activity in 39 mollusks and 4 polychaetes. J Invertebr Pathol 2001, 78:109-118.
- [66]Barbieri E, Barry K, Child A, Wainwright N: Antimicrobial activity in the microbial community of the accessory nidamental gland and egg cases of Loligo pealei (Cephalopoda: Loliginidae). Biol Bull 1997, 193:275-276.
- [67]Barbieri E, Gulledge J, Moser D, Chieng CC: New evidence for bacterial diversity in the accessory nidamental gland of the squid Loligo pealei. Biol Bull 1996, 191:316-317.
- [68]Kaufman MY, Ikeda Y, Patton C, Van Dykhuizen G, Epel D: Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol Bull 1998, 194:36-43.
- [69]Pichon D, Gaia V, Norman M, Boucher R: Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae). Mar Biol 2005, 147:1323-1332.
- [70]Nair P, Sherief PM: Antibacterial activity in the accessory nidamental gland extracts of the Indian squid, Loligo duvauceli Orbigny. Indian J. Mar. Sci. 2010, 39:100-104.
- [71]Piatigorsky J: Enigma of the abundant water-soluble cytoplasmic proteins of the cornea: the “refraction” hypothesis. Cornea 2001, 20:853-858.
- [72]Harvey EN: Bioluminescence. Academic, New York; 1952.
- [73]Kishitani T: Preliminary report on the luminous symbiosis in Sepiola birostrata Sasaki. Proc. Imp. Acad. Jpn. 1928, 4:393-396.
- [74]Kishitani T: L’tétude de I’organe photognène du Loligo edulis Hoyle (Notes préliminaires). Proc. Imp. Acad. Jpn. 1928, 4:609-612.
- [75]Arnold J, Young R: Ultrastructure of a cephalopod photophore. I. Structure of the photogenic tissue. Biol Bull 1974, 174:507-521.
- [76]Young RE, Arnold J: The functional morphology of a ventral photophore from the mesopelagic squid Abralia trigonura. Malacologia 1982, 23:135-163.
- [77]Young R, Roper CF, Mangold K, Leisman G, Hochberg FG: Luminescence from non-bioluminescent tissues in oceanic cephalopods. Mar Biol 1979, 53:69-77.
- [78]Takahashi H, Isobe M: Photoprotein of luminous squid, Symplectoteuthis oualaniensis and reconstruction of the luminous system. Chem Lett 1994, :843-846.
- [79]Isobe M, Kuse M, Tanji N, Matsuda T: Cysteine-390 is the binding site of luminous substance with symplectin, a photoprotein from Okinawan squid, Symplectoteuthis oualaniensis. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2008, 84:386-932.
- [80]Tsujii F: Bioluminescence reaction catalyzed by membrane-bound luciferase in the “firefly squid” Watasenia scintillans. BBA Biomembranes 2002, 1564:189-917.
- [81]Herring PJ: Luminescence in cephalopods and fish. In Biology of Cephalopods. Symposia of the Zoological Society of London. Academic, London; 1977:449-489.
- [82]Herring PJ, Dilly PN, Cope C: Different types of photophore in the oceanic squids Octopoteuthis and Taningia (Cephalopoda: Octopoteuthidae). J. Zool. 1992, 227:479-491. Lond
- [83]Young RE: Oceanic bioluminescence - an overview of general functions. Bull Mar Sci 1983, 33:829-845.
- [84]Robison BH, Young RE: Bioluminescence in pelagic octopods. Pac Sci 1981, 35:39-44.
- [85]Young RE, Seapy R, Mangold KM, Hochberg FG: Luminescent flashing in the midwater squids Pterygioteuthis microlampas and P. giardi. Mar Biol 1982, 69:299-308.
- [86]Robison BH, Reisenbichler KR, Hunt JC, Haddock SHD: Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol Bull 2003, 205:102-109.
- [87]Bush SL, Robison BH, Caldwell RH: Behaving in the dark: loctomotor, chromatic, postural, and bioluminescent behaviors of the deep-sea squid Octopoteuthis deletron Young 1972. Biol Bull 2009, 216:7-22.
- [88]Young RE, Vecchione M, Sweeney MJ: Bathyteuthoidea:. The Tree of Life Web Project , : . [tolweb.org/Bathyteuthoidea]
- [89]Nishiguchi MK, Lopez J, Boletzky SV: Enlightenment of old ideas from new investigations: more questions regarding the evlution of bacteriogenic light organs in squids. Evol. Devel. 2004, 61:41-49.
- [90]Guerrero-Ferreira R, Nishiguchi MK: Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 2007, 23:497-506.
- [91]Jones B, Nishiguchi MK: Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 2004, 144:1151-1155.
- [92]Sweeney MJ, Roper CF: Classification, type localities and type repositories of recent Cephalopoda. Smithsonian Cont. Zool. 1998, 586:561-599.
- [93]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nuc. Acids Res. 2004, 32:1792-1797.
- [94]Stamatakis A: RAxML-VI-HPC: Maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
- [95]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nuc. Acids Res. 2002, 30:3059-3066.
- [96]Wernersson R: Virtual Ribosome - a comprehensive translation tool wth support for sequence feature integration. Nuc. Acids Res. 2006, 34:W385-W388.
- [97]Abscal F, Zardoya R, Telford MJ: TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nuc. Acids Res. 2010, 38:W7-W13.
- [98]Sanderson M, Shaffer HB: Troubleshooting molecular phylogenetic analyses. Ann. Rev. Ecol. Syst. 2002, 33:49-72.
- [99]Thomson RC, Shaffer HB: Sparse supermatrices for phylogenetic inference: Taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol 2010, 59:42-58.
- [100]Posada D, Crandall K: Modeltest: testing the model of DNA substitution. Bioinformatics 1998, 14:817-818.
- [101]Nylander JA, Ronquist AF, Huelsenbeck JP, Nieves Aldrey JL: Bayesian phylogenetic analysis of combined data. Syst Biol 2004, 53:47-67.
- [102]Brandley MC, Schmitz A, Reeder TW: Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scinid lizards. Syst Biol 2005, 54:373-390.
- [103]Shwarz G: Estimating the dimensions of a model. Ann Stat 1978, 6:461-464.
- [104]McGuire JA, Witt CC, Altshuler DL, Remsen JV: Phylogenetic systematics and biogeography of hummingbirds: Bayesian and Maximum Likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst Biol 2007, 56:837-856.
- [105]Lartillot N, Phillipe H: A Bayesian mixsture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 2004, 21:1095-1109.
- [106]Lartillot N, Phillipe H: Computing Bayes factors using thermodynamic integration. Syst Biol 2006, 55:195-207.
- [107]Jereb P, Roper CFE: Cephalopods of the World. An annotated and illustrated catalogue of cephalopod species known to date: Myopsid and Oegopsid Squids. Food and Agriculture Organization of the United Nations, Rome; 2010:2.
- [108]Pagel M, Meade A: Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat 2006, 167:808-825.
- [109]Schluter D, Price T, Mooers AØ, Ludwig D: Likelihood of ancestor states in adaptive radiation. Evolution 1997, 51:1699-1711.
- [110]Edwards AFW: Likelihood. Cambridge University Press, Cambridge; 1972.
- [111]Pagel M: The maximum likelihood approach to reconstructing ancestral character states of disccrete characters on phylogenies. Syst Biol 1999, 48:612-622.
- [112]Lindgren AR: Molecular inference of phylogenetic relationships among Decapo diformes (Mollusca: Cephalopoda) with special focus on the squid Order Oegopsida. Mol. Phylogenet. Evol. 2010, 56:1-14.
- [113]Mindell DP, Honeycutt RL: Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu Rev Ecol Evol Syst 1990, 21:541-566.
- [114]Phillips MJ, Delsuc F, Penny D: Genome-scale phylogeny and the detection of systematic biases. Mol. Biol. Evolution 2004, 21:1455-1458.
- [115]Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18:502-504.
- [116]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts; 2002.
- [117]Xia X, Xie Z: DAMBE: Data analysis in molecular biology and evolution. J Hered 2001, 92:371-373.
PDF