期刊论文详细信息
BMC Genomics
Gene bionetworks involved in the epigenetic transgenerational inheritance of altered mate preference: environmental epigenetics and evolutionary biology
David Crews1  Andrea C Gore2  Bin Zhang3  Marina I Savenkova4  Michael K Skinner4 
[1]Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
[2]Pharmacology and Toxicology, Austin, Texas
[3]Department of Genetics & Genomic Sciences, Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
[4]Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
关键词: Behavior;    Evolution;    Networks;    Brain;    Epigenetics;   
Others  :  1217224
DOI  :  10.1186/1471-2164-15-377
 received in 2013-10-24, accepted in 2014-04-28,  发布年份 2014
PDF
【 摘 要 】

Background

Mate preference behavior is an essential first step in sexual selection and is a critical determinant in evolutionary biology. Previously an environmental compound (the fungicide vinclozolin) was found to promote the epigenetic transgenerational inheritance of an altered sperm epigenome and modified mate preference characteristics for three generations after exposure of a gestating female.

Results

The current study investigated gene networks involved in various regions of the brain that correlated with the altered mate preference behavior in the male and female. Statistically significant correlations of gene clusters and modules were identified to associate with specific mate preference behaviors. This novel systems biology approach identified gene networks (bionetworks) involved in sex-specific mate preference behavior. Observations demonstrate the ability of environmental factors to promote the epigenetic transgenerational inheritance of this altered evolutionary biology determinant.

Conclusions

Combined observations elucidate the potential molecular control of mate preference behavior and suggests environmental epigenetics can have a role in evolutionary biology.

【 授权许可】

   
2014 Skinner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705122642585.pdf 1944KB PDF download
Figure 7. 58KB Image download
Figure 6. 53KB Image download
Figure 5. 187KB Image download
Figure 4. 242KB Image download
Figure 3. 258KB Image download
Figure 2. 106KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Charlesworth B, Charlesworth D: Darwin and genetics. Genetics 2009, 183(3):757-766.
  • [2]Stein RA: Epigenetics and environmental exposures. J Epidemiol Community Health 2012, 66(1):8-13.
  • [3]Kalinowski ST: Evolutionary and statistical properties of three genetic distances. Mol Ecol 2002, 11(8):1263-1273.
  • [4]Wilkins AS: Genetic networks as transmitting and amplifying devices for natural genetic tinkering. Novartis Found Symp 2007, 284:71-86. discussion 86–79, 110–115
  • [5]Jirtle RL, Skinner MK: Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007, 8(4):253-262.
  • [6]Crews D, McLachlan JA: Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology 2006, 147(6 Suppl):S4-S10.
  • [7]Damiani G: The Yin and Yang of anti-Darwinian epigenetics and Darwinian genetics. Riv Biol 2007, 100(3):361-402.
  • [8]Day T, Bonduriansky R: A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am Nat 2011, 178(2):E18-E36.
  • [9]Kuzawa CW, Thayer ZM: Timescales of human adaptation: the role of epigenetic processes. Epigenomics 2011, 3(2):221-234.
  • [10]Flatscher R, Frajman B, Schonswetter P, Paun O: Environmental heterogeneity and phenotypic divergence: can heritable epigenetic variation aid speciation? Genet Res Int 2012, 2012:698421.
  • [11]Klironomos FD, Berg J, Collins S: How epigenetic mutations can affect genetic evolution: model and mechanism. Bioessays 2013, 35(6):571-578.
  • [12]Darwin C: The Descent of Man, and Selection in Relation to Sex. London: T. Murray; 1871.
  • [13]Anway MD, Cupp AS, Uzumcu M, Skinner MK: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308(5727):1466-1469.
  • [14]Guerrero-Bosagna C, Settles M, Lucker BJ, Skinner MK: Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010, 5(9):e13100.
  • [15]Skinner MK, Manikkam M, Guerrero-Bosagna C: Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010, 21(4):214-222.
  • [16]Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK: Transgenerational actions of environmental compounds on reproductive disease and epigenetic biomarkers of ancestral exposures. PLoS One 2012, 7(2):e31901.
  • [17]Skinner MK, Manikkam M, Tracey R, Nilsson E, Haque MM, Guerrero-Bosagna C: Ancestral DDT exposures promote epigenetic transgenerational inheritance of obesity. BMC Med 2013, 11:228.
  • [18]Kelce WR, Gray LE, Wilson EM: Antiandrogens as environmental endocrine disruptors. Reprod Fertil Dev 1998, 10(1):105-111.
  • [19]Morgan HD, Santos F, Green K, Dean W, Reik W: Epigenetic reprogramming in mammals. Hum Mol Genet 2005, 14 Spec No 1:R47-R58.
  • [20]Anway MD, Leathers C, Skinner MK: Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 2006, 147(12):5515-5523.
  • [21]Anway MD, Skinner MK: Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate 2008, 68(5):517-529.
  • [22]Nilsson EE, Anway MD, Stanfield J, Skinner MK: Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 2008, 135(5):713-721.
  • [23]Skinner MK, Anway MD, Savenkova MI, Gore AC, Crews D: Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One 2008, 3(11):e3745.
  • [24]Anway MD, Rekow SS, Skinner MK: Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 2008, 91(1):30-40.
  • [25]Skinner MK, Manikkam M, Haque MM, Zhang B, Savenkova M: Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 2012, 13(10):R91.
  • [26]Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK: Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci USA 2012, 109(23):9143-9148.
  • [27]Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK: Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci USA 2007, 104(14):5942-5946.
  • [28]Friend SH: The need for precompetitive integrative bionetwork disease model building. Clin Pharmacol Ther 2010, 87(5):536-539.
  • [29]Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A, Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake TA, Sachs A, Lusis AJ: An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005, 37:710-717.
  • [30]Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J, Torosyan G, Majid S, Falkard B, Kleinhanz RR, Karlsson J, Castellani LW, Mumick S, Wang K, Xie T, Coon M, Zhang C, Estrada-Smith D, Farber CR, Wang SS, van Nas A, Ghazalpour A, Zhang B, Macneil DJ, Lamb JR, Dipple KM, Reitman ML, Mehrabian M, Lum PY, Schadt EE, et al.: Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 2009, 41:415-423.
  • [31]Nilsson EE, Savenkova MI, Schindler R, Zhang B, Schadt EE, Skinner MK: Gene bionetwork analysis of ovarian primordial follicle development. PLoS One 2010, 5(7):e11637.
  • [32]Nilsson E, Zhang B, Skinner MK: Gene bionetworks that regulate ovarian primordial follicle assembly. BMC Genomics 2013, 14(1):496.
  • [33]Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, Bumgarner RE, Schadt EE: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 2008, 40(7):854-861.
  • [34]Millstein J, Zhang B, Zhu J, Schadt EE: Disentangling molecular relationships with a causal inference test. BMC Genet 2009, 10:23.
  • [35]Pandey G, Zhang B, Chang AN, Myers CL, Zhu J, Kumar V, Schadt EE: An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput Biol 2010, 6(9):e1000928.
  • [36]DiBenedictis BT, Ingraham KL, Baum MJ, Cherry JA: Disruption of urinary odor preference and lordosis behavior in female mice given lesions of the medial amygdala. Physiol Behav 2012, 105(2):554-559.
  • [37]Anway MD, Memon MA, Uzumcu M, Skinner MK: Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 2006, 27(6):868-879.
  • [38]Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S: Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2006, 2:e130.
  • [39]Sakata JT, Crews D: Developmental sculpting of social phenotype and plasticity. Neurosci Biobehav Rev 2004, 28(2):95-112.
  • [40]Skinner MK: Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today 2011, 93(1):51-55.
  • [41]Skinner MK: Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011, 6(7):838-842.
  • [42]Skinner M, Guerrero-Bosagna C, Haque MM, Nilsson E, Bhandari R, McCarrey J: Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and subsequent germline. PLoS One 2013, 8(7):e66318.
  • [43]Salian S, Doshi T, Vanage G: Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A. Life Sci 2009, 85(1–2):11-18.
  • [44]Bruner-Tran KL, Osteen KG: Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol 2011, 31(3):344-350.
  • [45]Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S: Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 2008, 32(9):1373-1379.
  • [46]Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ: Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 2008, 115(10):1243-1249.
  • [47]Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, Golding J: Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006, 14(2):159-166.
  • [48]Dias BG, Ressler KJ: Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 2014, 17(1):89-96.
  • [49]Buck LB: Olfactory receptors and odor coding in mammals. Nutr Rev 2004, 62(11 Pt 2):S184-S188. discussion S224-141
  • [50]Brennan PA, Zufall F: Pheromonal communication in vertebrates. Nature 2006, 444(7117):308-315.
  • [51]Dulac C, Wagner S: Genetic analysis of brain circuits underlying pheromone signaling. Annu Rev Genet 2006, 40:449-467.
  • [52]Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prufer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Hober B, Hoffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ , et al.: A draft sequence of the Neandertal genome. Science 2010, 328:710-722.
  • [53]Kim SY, Kim YS: A gene sets approach for identifying prognostic gene signatures for outcome prediction. BMC Genomics 2008, 9:177.
  • [54]Williams G: Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought. Princeton, NJ: Princeton Univ. Press; 1966.
  • [55]Crews D: Diversity of hormone-behavior relations in reproductive behavior. In Introduction to Behavioral Endocrinology. 2nd edition. Edited by Becker JBM, McCarthy M, Crews D. MIT Press/Bradford Books; 1992:143-186.
  • [56]Crews D: The evolutionary antecedents to love. Psychoneuroendocrinology 1998, 23(8):751-764.
  • [57]Gowaty PA, Anderson WW, Bluhm CK, Drickamer LC, Kim YK, Moore AJ: The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Natl Acad Sci USA 2007, 104(38):15023-15027.
  • [58]Mattle B, Wilson AB: Body size preferences in the pot-bellied seahorse Hippocampus abdominalis: choosy males and indiscriminate females. Behav Ecol Sociobiol 2009, 63(10):1403-1410.
  • [59]Carson HL: The contribution of sexual behavior to Darwinian fitness. Behav Genet 1987, 17(6):597-611.
  • [60]Carson HL: Mate choice theory and the mode of selection in sexual populations. Proc Natl Acad Sci U S A 2003, 100(11):6584-6587.
  • [61]Gowaty PA, Steinichen R, Anderson WW: Mutual interest between the sexes and reproductive success in Drosophila pseudoobscura. Evolution 2002, 56(12):2537-2540.
  • [62]Stunden CE, Bluhm CK, Cheng KM, Rajamahendran R: Factors affecting reproductive performance in captive Mallard ducks. Theriogenology 1999, 52(3):435-446.
  • [63]Drickamer LC, Gowaty PA, Holmes CM: Free female mate choice in house mice affects reproductive success and offspring viability and performance. Anim Behav 2000, 59(2):371-378.
  • [64]Drickamer LCGP, Wagner DM: Free mutual mate preferences in house mice affect reproductive success and offspring performance. Animal Behav 2003, 65:105-114.
  • [65]Kirkpatrick M, Ryan MJ: The evolution of mating preferences and the paradox of the lek. Nature 1991, 350:33-38.
  • [66]Ryan M: Sexual selection, sensory systems, and sensory exploitation. Oxford Survey Evol Biol 1990, 7:157-196.
  • [67]Beach F: Animal models for human sexuality. In Sex, Hormones and Behaviour. Edited by Potter RWJ. Amsterdam: Ciba Foundation Symposium 62, Excerpta Medica; 1979:113-143.
  • [68]Crews D: Evolution of neuroendocrine mechanisms that regulate sexual behavior. Trends Endocrinol Metab 2005, 16(8):354-361.
  • [69]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. New York: Academic; 2007.
  • [70]Bosotti R, Locatelli G, Healy S, Scacheri E, Sartori L, Mercurio C, Calogero R, Isacchi A: Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinforma 2007, 8(Suppl 1):S5.
  • [71]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005., 4Article17
  • [72]Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, Sachs JR, Schadt EE: Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol 2007, 3(4):e69.
  • [73]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555.
  • [74]Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for r. Bioinformatics 2008, 24(5):719-720.
  • [75]Lum PY, Chen Y, Zhu J, Lamb J, Melmed S, Wang S, Drake TA, Lusis AJ, Schadt EE: Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J Neurochem 2006, 97(Suppl 1):50-62.
  • [76]Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J, Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S, Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A, Horvath S, Drake TA, Lusis AJ, Schadt EE: Variations in DNA elucidate molecular networks that cause disease. Nature 2008, 452:429-435.
  • [77]Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ: Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A 2006, 103:12741-12746.
  • [78]Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM, Laurance MF, Zhao W, Qi S, Chen Z, Lee Y, Scheck AC, Liau LM, Wu H, Geschwind DH, Febbo PG, Kornblum HI, Cloughesy TF, Nelson SF, Mischel PS: Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 2006, 103:17402-17407.
  • [79]Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher , et al.: Genetics of gene expression and its effect on disease. Nature 2008, 452:423-428.
  • [80]Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, et al.: Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008, 6:e107.
  • [81]Zhu J, Zhang B, Schadt EE: A systems biology approach to drug discovery. Adv Genet 2008, 60:603-635.
  • [82]Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res 2007, 17(10):1537-1545.
  文献评价指标  
  下载次数:92次 浏览次数:45次