期刊论文详细信息
BMC Neuroscience
Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy
Inderjit Singh2  Avtar K Singh1  Fumiyo Matsuda3  Tajinder S Dhammu2  Mushfiquddin Khan2 
[1] Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA;Department of Pediatrics, Medical University of South Carolina, Charleston 29425, SC, USA;School of Health Science, Kagoshima University, Kagoshima, Japan
关键词: Cerebral ischemia reperfusion;    Stroke;    S-nitrosoglutathione;    Peroxynitrite;    Neuroprotection;    Neuronal nitric oxide synthase;    AMP-activated protein kinase;   
Others  :  1220308
DOI  :  10.1186/s12868-015-0179-x
 received in 2015-01-28, accepted in 2015-07-06,  发布年份 2015
PDF
【 摘 要 】

Background

Stroke immediately sets into motion sustained excitotoxicity and calcium dysregulation, causing aberrant activity in neuronal nitric oxide synthase (nNOS) and an imbalance in the levels of nitric oxide (NO). Drugs targeting nNOS-originated toxicity may therefore reduce stroke-induced damage. Recently, we observed that a redox-modulating agent of the NO metabolome, S-nitrosoglutathione (GSNO), confers neurovascular protection by reducing the levels of peroxynitrite, a product of aberrant NOS activity. We therefore investigated whether GSNO-mediated neuroprotection and improved neurological functions depend on blocking nNOS/peroxynitrite-associated injurious mechanisms using a rat model of cerebral ischemia reperfusion (IR).

Results

IR increased the activity of nNOS, the levels of neuronal peroxynitrite and phosphorylation at Ser 1412of nNOS. GSNO treatment of IR animals decreased IR-activated nNOS activity and neuronal peroxynitrite levels by reducing nNOS phosphorylation at Ser 1412 . The Ser 1412phosphorylation is associated with increased nNOS activity. Supporting the notion that nNOS activity and peroxynitrite are deleterious following IR, inhibition of nNOS by its inhibitor 7-nitroindazole or reducing peroxynitrite by its scavenger FeTPPS decreased IR injury. GSNO also decreased the activation of AMP Kinase (AMPK) and its upstream kinase LKB1, both of which were activated in IR brain. AMPK has been implicated in nNOS activation via Ser 1412phosphorylation. To determine whether AMPK activation is deleterious in the acute phase of IR, we treated animals after IR with AICAR (an AMPK activator) and compound c (an AMPK inhibitor). While AICAR potentiated, compound c reduced the IR injury.

Conclusions

Taken together, these results indicate an injurious nNOS/peroxynitrite/AMPK cycle following stroke, and GSNO treatment of IR inhibits this vicious cycle, resulting in neuroprotection and improved neurological function. GSNO is a natural component of the human body, and its exogenous administration to humans is not associated with any known side effects. Currently, the FDA-approved thrombolytic therapy suffers from a lack of neuronal protective activity. Because GSNO provides neuroprotection by ameliorating stroke’s initial and causative injuries, it is a candidate of translational value for stroke therapy.

【 授权许可】

   
2015 Khan et al.

【 预 览 】
附件列表
Files Size Format View
20150722021429962.pdf 3035KB PDF download
Figure7. 62KB Image download
Figure6. 21KB Image download
Figure5. 40KB Image download
Figure4. 45KB Image download
Figure3. 19KB Image download
Figure2. 64KB Image download
Figure1. 87KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

Figure7.

【 参考文献 】
  • [1]Moskowitz MA, Lo EH, Iadecola C: The science of stroke: mechanisms in search of treatments. Neuron 2010, 67(2):181-198.
  • [2]Cramer SC: Repairing the human brain after stroke. II. Restorative therapies. Ann Neurol 2008, 63(5):549-560.
  • [3]Cramer SC: Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol 2008, 63(3):272-287.
  • [4]Wei G, Dawson VL, Zweier JL: Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia. Biochim Biophys Acta 1999, 1455(1):23-34.
  • [5]Sun M, Zhao Y, Gu Y, Xu C: Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int 2009, 54(5–6):339-346.
  • [6]Yoshida T, Limmroth V, Irikura K, Moskowitz MA: The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 1994, 14(6):924-929.
  • [7]Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, et al.: Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 1999, 19(14):5910-5918.
  • [8]Samdani AF, Dawson TM, Dawson VL: Nitric oxide synthase in models of focal ischemia. Stroke 1997, 28(6):1283-1288.
  • [9]Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA: Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cereb Blood Flow Metab 1996, 16(4):605-611.
  • [10]Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA: Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994, 265(5180):1883-1885.
  • [11]Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, et al.: The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 2012, 123(Suppl 2):86-97.
  • [12]Gursoy-Ozdemir Y, Can A, Dalkara T: Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 2004, 35(6):1449-1453.
  • [13]Gursoy-Ozdemir Y, Yemisci M, Dalkara T: Microvascular protection is essential for successful neuroprotection in stroke. J Neurochem 2012, 123(Suppl 2):2-11.
  • [14]Iadecola C, Xu X, Zhang F, el-Fakahany EE, Ross ME: Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 1995, 15(1):52-59.
  • [15]Iadecola C, Zhang F, Casey R, Clark HB, Ross ME: Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 1996, 27(8):1373-1380.
  • [16]Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, et al.: Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic brain injury in mice. J Immunol 2014, 193(5):2531-2537.
  • [17]Qu ZW, Miao WY, Hu SQ, Li C, Zhuo XL, Zong YY, et al.: N-methyl-D-aspartate receptor-dependent denitrosylation of neuronal nitric oxide synthase increase the enzyme activity. PLoS One 2012, 7(12):e52788.
  • [18]Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, et al.: Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 2007, 27(13):3445-3455.
  • [19]Sun J, Druhan LJ, Zweier JL: Dose dependent effects of reactive oxygen and nitrogen species on the function of neuronal nitric oxide synthase. Arch Biochem Biophys 2008, 471(2):126-133.
  • [20]Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA: Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem 2002, 277(36):32552-32557.
  • [21]Manwani B, McCullough LD (2013) Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res
  • [22]Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH: Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 2011, 14(10):1863-1876.
  • [23]McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV: Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 2005, 280(21):20493-20502.
  • [24]Murphy BA, Fakira KA, Song Z, Beuve A, Routh VH: AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am J Physiol Cell Physiol 2009, 297(3):C750-C758.
  • [25]Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE: AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000, 279(5):E1202-E1206.
  • [26]Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I: Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 2006, 15(2):114-124.
  • [27]Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, et al.: S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 2005, 25(2):177-192.
  • [28]Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, et al.: Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 2009, 6:32. BioMed Central Full Text
  • [29]Khan M, Sakakima H, Dhammu TS, Shunmugavel A, Im YB, Gilg AG, et al.: S-Nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats. J Neuroinflammation 2011, 8(1):78. BioMed Central Full Text
  • [30]Won JS, Kim J, Annamalai B, Shunmugavel A, Singh I, Singh AK: Protective role of S-nitrosoglutathione (GSNO) against cognitive impairment in rat model of chronic cerebral hypoperfusion. J Alzheimers Dis 2013, 34(3):621-635.
  • [31]Broniowska KA, Diers AR, Hogg N: S-nitrosoglutathione. Biochim Biophys Acta 2013, 1830(5):3173-3181.
  • [32]Pacher P, Beckman JS, Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007, 87(1):315-424.
  • [33]Que LG, Liu L, Yan Y, Whitehead GS, Gavett SH, Schwartz DA, et al.: Protection from experimental asthma by an endogenous bronchodilator. Science 2005, 308(5728):1618-1621.
  • [34]Thiyagarajan M, Kaul CL, Sharma SS: Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol 2004, 142(5):899-911.
  • [35]Matsuda F, Sakakima H, Yoshida Y: The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf) 2011, 201(2):275-287.
  • [36]Sakakima H, Khan M, Dhammu TS, Shunmugavel A, Yoshida Y, Singh I, et al.: Stimulation of functional recovery via the mechanisms of neurorepair by S-nitrosoglutathione and motor exercise in a rat model of transient cerebral ischemia and reperfusion. Restor Neurol Neurosci 2012, 30(5):383-396.
  • [37]Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR: A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 1990, 10(2):290-293.
  • [38]Coert BA, Anderson RE, Meyer FB: Is neuroprotective efficacy of nNOS inhibitor 7-NI dependent on ischemic intracellular pH? Am J Physiol Heart Circ Physiol 2003, 284(1):H151-H159.
  • [39]Jatana M, Giri S, Ansari MA, Elango C, Singh AK, Singh I, et al.: Inhibition of NF-kB activation by 5-lipoxygenase inhibitors protects brain against injury in a rat model of focal cerebral ischemia. J Neuroinflammation 2006, 3(1):12. BioMed Central Full Text
  • [40]Willmot M, Gibson C, Gray L, Murphy S, Bath P: Nitric oxide synthase inhibitors in experimental ischemic stroke and their effects on infarct size and cerebral blood flow: a systematic review. Free Radic Biol Med 2005, 39(3):412-425.
  • [41]Li J, McCullough LD: Effects of AMP-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab 2010, 30(3):480-492.
  • [42]Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al.: Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014, 129(3):e28-e292.
  • [43]Selim M: Perioperative stroke. N Engl J Med 2007, 356(7):706-713.
  • [44]Lo EH: Combination stroke therapy: easy as APC? Nat Med 2004, 10(12):1295-1296.
  • [45]Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD: Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996, 27(9):1616-1622.
  • [46]Ginsberg MD, Busto R: Rodent models of cerebral ischemia. Stroke 1989, 20(12):1627-1642.
  • [47]Rameau GA, Chiu LY, Ziff EB: NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol Aging 2003, 24(8):1123-1133.
  • [48]Chiueh CC, Rauhala P: The redox pathway of S-nitrosoglutathione, glutathione and nitric oxide in cell to neuron communications. Free Radic Res 1999, 31(6):641-650.
  • [49]Schrammel A, Gorren AC, Schmidt K, Pfeiffer S, Mayer B: S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radic Biol Med 2003, 34(8):1078-1088.
  • [50]Gingerich S, Krukoff TL: Activation of ERbeta increases levels of phosphorylated nNOS and NO production through a Src/PI3 K/Akt-dependent pathway in hypothalamic neurons. Neuropharmacology 2008, 55(5):878-885.
  • [51]Hayashi Y, Nishio M, Naito Y, Yokokura H, Nimura Y, Hidaka H, et al.: Regulation of neuronal nitric-oxide synthase by calmodulin kinases. J Biol Chem 1999, 274(29):20597-20602.
  • [52]Komeima K, Hayashi Y, Naito Y, Watanabe Y: Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J Biol Chem 2000, 275(36):28139-28143.
  • [53]Hurt KJ, Sezen SF, Lagoda GF, Musicki B, Rameau GA, Snyder SH, et al.: Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection. Proc Natl Acad Sci USA 2012, 109(41):16624-16629.
  • [54]Komeima K, Watanabe Y: Dephosphorylation of nNOS at Ser(847) by protein phosphatase 2A. FEBS Lett 2001, 497(1):65-66.
  • [55]Wang Q, Pelligrino DA, Baughman VL, Koenig HM, Albrecht RF: The role of neuronal nitric oxide synthase in regulation of cerebral blood flow in normocapnia and hypercapnia in rats. J Cereb Blood Flow Metab 1995, 15(5):774-778.
  • [56]Ma T, Chen Y, Vingtdeux V, Zhao H, Viollet B, Marambaud P, et al.: Inhibition of AMP-activated protein kinase signaling alleviates impairments in hippocampal synaptic plasticity induced by amyloid beta. J Neurosci 2014, 34(36):12230-12238.
  • [57]Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, et al.: Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 2011, 470(7334):404-408.
  • [58]Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R: The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 2004, 18(24):3004-3009.
  • [59]Douglas PM, Dillin A: Protein homeostasis and aging in neurodegeneration. J Cell Biol 2010, 190(5):719-729.
  • [60]Xie Z, Dong Y, Zhang M, Cui MZ, Cohen RA, Riek U, et al.: Activation of protein kinase Czeta by peroxynitrite regulates LKB1-dependent AMP-activated protein kinase in cultured endothelial cells. J Biol Chem 2006, 281(10):6366-6375.
  • [61]de Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ: Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res 1994, 28(5):691-694.
  • [62]Colagiovanni DB, Borkhataria D, Looker D, Schuler D, Bachmann C, Sagelsdorff P, et al.: Preclinical 28-day inhalation toxicity assessment of s-nitrosoglutathione in beagle dogs and wistar rats. Int J Toxicol 2011, 30(5):466-477.
  文献评价指标  
  下载次数:98次 浏览次数:20次