期刊论文详细信息
BMC Genomics
The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes
Sven B Gould3  Giddy Landan2  Dan Graur1  Claudia Radine3  Gary Kusdian3  Christian Woehle2 
[1] Department of Biology and Biochemistry, University of Houston, Houston, TX, USA;Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University, Kiel, Germany;Institute of Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
关键词: Stop codon suppression;    Genome Duplication;    Gene families;    Pseudogenes;    Non-coding RNA;    Trichomonas;   
Others  :  1128450
DOI  :  10.1186/1471-2164-15-906
 received in 2014-02-19, accepted in 2014-10-09,  发布年份 2014
PDF
【 摘 要 】

Background

The human pathogen Trichomonas vaginalis is a parabasalian flagellate that is estimated to infect 3% of the world’s population annually. With a 160 megabase genome and up to 60,000 genes residing in six chromosomes, the parasite has the largest genome among sequenced protists. Although it is thought that the genome size and unusual large coding capacity is owed to genome duplication events, the exact reason and its consequences are less well studied.

Results

Among transcriptome data we found thousands of instances, in which reads mapped onto genomic loci not annotated as genes, some reaching up to several kilobases in length. At first sight these appear to represent long non-coding RNAs (lncRNAs), however, about half of these lncRNAs have significant sequence similarities to genomic loci annotated as protein-coding genes. This provides evidence for the transcription of hundreds of pseudogenes in the parasite. Conventional lncRNAs and pseudogenes are expressed in Trichomonas through their own transcription start sites and independently from flanking genes in Trichomonas. Expression of several representative lncRNAs was verified through reverse-transcriptase PCR in different T. vaginalis strains and case studies exclude the use of alternative start codons or stop codon suppression for the genes analysed.

Conclusion

Our results demonstrate that T. vaginalis expresses thousands of intergenic loci, including numerous transcribed pseudogenes. In contrast to yeast these are expressed independently from neighbouring genes. Our results furthermore illustrate the effect genome duplication events can have on the transcriptome of a protist. The parasite’s genome is in a steady state of changing and we hypothesize that the numerous lncRNAs could offer a large pool for potential innovation from which novel proteins or regulatory RNA units could evolve.

【 授权许可】

   
2014 Woehle et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223144051922.pdf 995KB PDF download
Figure 5. 68KB Image download
Figure 4. 53KB Image download
Figure 3. 89KB Image download
Figure 2. 20KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Petrin D, Delgaty K, Bhatt R, Garber G: Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 1998, 11:300-317.
  • [2]Lal K, Noel CJ, Field MC, Goulding D, Hirt RP: Dramatic reorganisation of Trichomonas endomembranes during amoebal transformation: A possible role for G-proteins. Mol Biochem Parasitol 2006, 148:99-102.
  • [3]Kusdian G, Woehle C, Martin WF, Gould SB: The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol 2013, 15:1707-1721.
  • [4]Embley TM, Hirt RP: Early branching eukaryotes? Curr Opin Genet Dev 1998, 8:624-629.
  • [5]Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, et al.: Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007, 315:207-212.
  • [6]Smith A, Johnson P: Gene expression in the unicellular eukaryote Trichomonas vaginalis. Res Microbiol 2011, 162:646-654.
  • [7]Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Morrison HG, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ Jr, Sullivan S, Treatman C, Wang H: GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 2009, 37:D526-530.
  • [8]Alsmark UC, Sicheritz-Ponten T, Foster PG, Hirt RP, Embley TM: Horizontal gene transfer in eukaryotic parasites: a case study of Entamoeba histolytica and Trichomonas vaginalis. Methods Mol Biol 2009, 532:489-500.
  • [9]Noël CJ, Diaz N, Sicheritz-Ponten T, Safarikova L, Tachezy J, Tang P, Fiori P-L, Hirt RP: Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 2010, 11:99. BioMed Central Full Text
  • [10]Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V, Martin WF: Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol 2013, 43:707-719.
  • [11]Cui J, Das S, Smith TF, Samuelson J: Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 2010, 4:e782.
  • [12]Chen XS, Penny D, Collins LJ: Characterization of RNase MRP RNA and novel snoRNAs from Giardia intestinalis and Trichomonas vaginalis. BMC Genomics 2011, 12:550. BioMed Central Full Text
  • [13]Piccinelli P, Rosenblad MA, Samuelsson T: Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 2005, 33:4485-4495.
  • [14]Chen XS, Collins LJ, Biggs PJ, Penny D: High throughput genome-wide survey of small RNAs from the parasitic protists Giardia intestinalis and Trichomonas vaginalis. Genome Biol Evol 2009, 1:165-175.
  • [15]Lin WC, Huang KY, Chen SC, Huang TY, Chen SJ, Huang PJ, Tang P: Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis. Parasitol Res 2009, 105:1683-1689.
  • [16]Lin WC, Li SC, Lin WC, Shin JW, Hu SN, Yu XM, Huang TY, Chen SC, Chen HC, Chen SJ, Huang PJ, Gan RR, Chiu CH, Tang P: Identification of microRNA in the protist Trichomonas vaginalis. Genomics 2009, 93:487-493.
  • [17]Huang PJ, Lin WC, Chen SC, Lin YH, Sun CH, Lyu PC, Tang P: Identification of putative miRNAs from the deep-branching unicellular flagellates. Genomics 2012, 99:101-107.
  • [18]Simoes-Barbosa A, Meloni D, Wohlschlegel JA, Konarska MM, Johnson PJ: Spliceosomal snRNAs in the unicellular eukaryote Trichomonas vaginalis are structurally conserved but lack a 5′-cap structure. RNA 2008, 14:1617-1631.
  • [19]Tarver JE, Donoghue PCJ, Peterson KJ: Do miRNAs have a deep evolutionary history? Bioessays 2012, 34:857-866.
  • [20]Amaral PP, Mattick JS: Noncoding RNA in development. Mamm Genome 2008, 19:454-492.
  • [21]Hu W, Alvarez-Dominguez JR, Lodish HF: Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep 2012, 13:971-983.
  • [22]Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007, 316:1484-1488.
  • [23]Mercer TR, Dinger ME, Mattick JS: Long non-coding RNAs: insights into functions. Nat Rev Genet 2009, 10:155-159.
  • [24]Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS: Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008, 105:716-721.
  • [25]Nam JW, Bartel DP: Long noncoding RNAs in C. elegans. Genome Res 2012, 22:2529-2540.
  • [26]Ponjavic J, Ponting CP, Lunter G: Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 2007, 17:556-565.
  • [27]van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, van Oudenaarden A, Primig M, Amon A: Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 2012, 150:1170-1181.
  • [28]Huang KY, Chen YY, Fang YK, Cheng WH, Cheng CC, Chen YC, Wu TE, Ku FM, Chen SC, Lin R, Tang P: Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta 1840, 2014:53-64.
  • [29]Collins LJ: Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology. Front Genet 2011, 2:96.
  • [30]Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004, 116:499-509.
  • [31]Struhl K: Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 2007, 14:103-105.
  • [32]The ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447:799-816.
  • [33]Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E: On the immortality of television sets: “function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol 2013, 5:578-590.
  • [34]Dutrow N, Nix DA, Holt D, Milash B, Dalley B, Westbroek E, Parnell TJ, Cairns BR: Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. Nat Genet 2008, 40:977-986.
  • [35]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320:1344-1349.
  • [36]Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bähler J: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 2008, 453:1239-1243.
  • [37]Liu J, Gough J, Rost B: Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet 2006, 2:e29.
  • [38]Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS: lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2011, 39:D146-151.
  • [39]Niazi F, Valadkhan S: Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. RNA 2012, 18:825-843.
  • [40]Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, Brar GA, Weissman JS, Regev A, Thierry-Mieg N, Cusick ME, Vidal M: Proto-genes and de novo gene birth. Nature 2012, 487:370-374.
  • [41]Ericson M, Janes MA, Butter F, Mann M, Ullu E, Tschudi C: On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. BMC Biol 2014, 12:14. BioMed Central Full Text
  • [42]Kastenmayer JP, Ni L, Chu A, Kitchen LE, Au WC, Yang H, Carter CD, Wheeler D, Davis RW, Boeke JD, Snyder MA, Basrai MA: Functional genomics of genes with small open reading frames (sORFs) in S. cerevisiae. Genome Res 2006, 16:365-373.
  • [43]Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K, Nishi R, Ohashi C, Iida K, Tanaka M, Horii Y, Kawashima M, Matsui K, Toyoda T, Shinozaki K, Seki M, Matsui M: Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci U S A 2013, 110:2395-2400.
  • [44]Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, Choo SW, Lu Y, Denoeud F, Antonarakis SE, Snyder M, Ruan Y, Wei CL, Gingeras TR, Guigó R, Harrow J, Gerstein MB: Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res 2007, 17:839-851.
  • [45]Poliseno L: Pseudogenes: newly discovered players in human cancer. Sci Signal 2012, 5:re5.
  • [46]The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489:57-74.
  • [47]Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR: Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 2011, 17:792-798.
  • [48]Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ: Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 2008, 453:534-538.
  • [49]Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008, 453:539-543.
  • [50]Hawkins PG, Morris KV: Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 2010, 1:165-175.
  • [51]Korneev SA, Park JH, O’Shea M: Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 1999, 19:7711-7720.
  • [52]Duret L, Chureau C, Samain S, Weissenbach J, Avner P: The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 2006, 312:1653-1655.
  • [53]Kolev NG, Franklin JB, Carmi S, Shi HF, Michaeli S, Tschudi C: The Transcriptome of the Human Pathogen Trypanosoma brucei at Single-Nucleotide Resolution. PLoS Pathog 2010, 6:e1001090.
  • [54]Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J: A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 2012, 40:10084-10097.
  • [55]Xiong J, Lu XY, Zhou ZM, Chang Y, Yuan DX, Tian M, Zhou ZG, Wang L, Fu CJ, Orias E, Miao W: Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using deep RNA sequencing. PLoS One 2012, 7:e30630.
  • [56]Dyhrman ST, Jenkins BD, Rynearson TA, Saito MA, Mercier ML, Alexander H, Whitney LP, Drzewianowski A, Bulygin VV, Bertrand EM, Wu Z, Benitez-Nelson C, Heithoff A: The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS One 2012, 7:e33768.
  • [57]Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 2006, 34:D363-368.
  • [58]Tempel S: Using and understanding RepeatMasker. Methods Mol Biol 2012, 859:29-51.
  • [59]Cui J, Smith TF, Samuelson J: Gene expansion in Trichomonas vaginalis: a case study on transmembrane cyclases. Genome Inform 2007, 18:35-43.
  • [60]Zhang Z, Gerstein M: Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 2004, 14:328-335.
  • [61]Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, et al.: The genome of the African trypanosome Trypanosoma brucei. Science 2005, 309:416-422.
  • [62]Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004, 5:R7. BioMed Central Full Text
  • [63]Kay C, Woodward KD, Lawler K, Self TJ, Dyall SD, Kerr ID: The ATP-binding cassette proteins of the deep-branching protozoan parasite Trichomonas vaginalis. PLoS Negl Trop Dis 2012, 6:e1693.
  • [64]Zimorski V, Major P, Hoffmann K, Brás XP, Martin WF, Gould SB: The N-terminal sequences of four major hydrogenosomal proteins are not essential for import into hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2013, 60:89-97.
  • [65]Wang GZ, Lercher MJ, Hurst LD: Transcriptional coupling of neighboring genes and gene expression noise: evidence that gene orientation and noncoding transcripts are modulators of noise. Genome Biol Evol 2011, 3:320-331.
  • [66]Ebisuya M, Yamamoto T, Nakajima M, Nishida E: Ripples from neighbouring transcription. Nat Cell Biol 2008, 10:1106-1113.
  • [67]Smith AJ, Chudnovsky L, Simoes-Barbosa A, Delgadillo-Correa MG, Jonsson ZO, Wohlschlegel JA, Johnson PJ: Novel core promoter elements and a cognate transcription factor in the divergent unicellular eukaryote Trichomonas vaginalis. Mol Cell Biol 2011, 31:1444-1458.
  • [68]Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database Collaboration: The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res 2012, 40:D54-56.
  • [69]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25:1105-1111.
  • [70]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28:511-515.
  • [71]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [72]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26:841-842.
  • [73]Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
  • [74]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
  • [75]Hrdy I, Hirt RP, Dolezal P, Bardonová L, Foster PG, Tachezy J, Embley TM: Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 2004, 432:618-622.
  • [76]Delgadillo MG, Liston DR, Niazi K, Johnson PJ: Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 1997, 94:4716-4720.
  文献评价指标  
  下载次数:60次 浏览次数:17次