期刊论文详细信息
BMC Systems Biology
Analysis of the quantitative balance between insulin-like growth factor (IGF)-1 ligand, receptor, and binding protein levels to predict cell sensitivity and therapeutic efficacy
Pamela K Kreeger2  Dan Tian1 
[1] Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Dr, Madison 53706, WI, USA;University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison 53792, WI, USA
关键词: Ovarian cancer;    Mathematical modeling;    Insulin-like growth factor (IGF);   
Others  :  1159575
DOI  :  10.1186/s12918-014-0098-y
 received in 2014-04-22, accepted in 2014-08-05,  发布年份 2014
PDF
【 摘 要 】

Background

The insulin-like growth factor (IGF) system impacts cell proliferation and is highly activated in ovarian cancer. While an attractive therapeutic target, the IGF system is complex with two receptors (IGF1R, IGF2R), two ligands (IGF1, IGF2), and at least six high affinity IGF-binding proteins (IGFBPs) that regulate the bioavailability of IGF ligands. We hypothesized that a quantitative balance between these different network components regulated cell response.

Results

OVCAR5, an immortalized ovarian cancer cell line, were found to be sensitive to IGF1, with the dose of IGF1 (i.e., the total mass of IGF1 available) a more reliable predictor of cell response than ligand concentration. The applied dose of IGF1 was depleted by both cell-secreted IGFBPs and endocytic trafficking, with IGFBPs sequestering up to 90% of the available ligand. To explore how different variables (i.e., IGF1, IGFBPs, and IGF1R levels) impacted cell response, a mass-action steady-state model was developed. Examination of the model revealed that the level of IGF1-IGF1R complexes per cell was directly proportional to the extent of proliferation induced by IGF1. Model analysis suggested, and experimental results confirmed, that IGFBPs present during IGF1 treatment significantly decreased IGF1-mediated proliferation. We utilized this model to assess the efficacy of IGF1 and IGF1R antibodies against different network compositions and determined that IGF1R antibodies were more globally effective due to the receptor-limited state of the network.

Conclusions

Changes that affect IGF1R occupancy have predictable effects on IGF1-induced proliferation and our model captured these effects. Analysis of this model suggests that IGF1R antibodies will be more effective than IGF1 antibodies, although the difference was minimal in conditions with low levels of IGF1 and IGFBPs. Examining how different components of the IGF system influence cell response will be critical to improve our understanding of the IGF signaling network in ovarian cancer.

【 授权许可】

   
2014 Tian and Kreeger; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150409021424311.pdf 935KB PDF download
Figure 4. 65KB Image download
Figure 3. 55KB Image download
Figure 2. 25KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Le Roith D: Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 1997, 336:633-640.
  • [2]Weroha SJ, Haluska P: The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am 2012, 41:335-350. vi
  • [3]Baserga R, Peruzzi F, Reiss K: The IGF-1 receptor in cancer biology. Int J Cancer 2003, 107:873-877.
  • [4]Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R: Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 1994, 14:3604-3612.
  • [5]Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman HL, Kajstura J, Rubin R, Zoltick P, Baserga R: The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res 1995, 55:2463-2469.
  • [6]Epaud R, Aubey F, Xu J, Chaker Z, Clemessy M, Dautin A, Ahamed K, Bonora M, Hoyeau N, Flejou JF, Mailleux A, Clement A, Henrion-Caude A, Holzenberger M: Knockout of insulin-like growth factor-1 receptor impairs distal lung morphogenesis. PLoS One 2012, 7:e48071.
  • [7]Powell-Braxton L, Hollingshead P, Giltinan D, Pitts-Meek S, Stewart T: Inactivation of the IGF-I gene in mice results in perinatal lethality. Ann N Y Acad Sci 1993, 692:300-301.
  • [8]Baker J, Liu JP, Robertson EJ, Efstratiadis A: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 75:73-82.
  • [9]Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 1999, 140:5075-5081.
  • [10]Ruan W, Powell-Braxton L, Kopchick JJ, Kleinberg DL: Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development. Endocrinology 1999, 140:1984-1989.
  • [11]Rogers SA, Powell-Braxton L, Hammerman MR: Insulin-like growth factor I regulates renal development in rodents. Dev Genet 1999, 24:293-298.
  • [12]Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993, 75:59-72.
  • [13]Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA: IGF-I is required for normal embryonic growth in mice. Genes Dev 1993, 7:2609-2617.
  • [14]Bahr C, Groner B: The insulin like growth factor-1 receptor (IGF-1R) as a drug target: novel approaches to cancer therapy. Growth Horm IGF Res 2004, 14:287-295.
  • [15]Zhang H, Yee D: The therapeutic potential of agents targeting the type I insulin-like growth factor receptor. Expert Opin Investig Drugs 2004, 13:1569-1577.
  • [16]Jones JI, Clemmons DR: Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995, 16:3-34.
  • [17]Yu H, Rohan T: Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000, 92:1472-1489.
  • [18]Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D: Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 1998, 121:19-26.
  • [19]Sabbatini P, Rowand JL, Groy A, Korenchuk S, Liu Q, Atkins C, Dumble M, Yang J, Anderson K, Wilson BJ, Emmitte KA, Rabindran SK, Kumar R: Antitumor activity of GSK1904529A, a small-molecule inhibitor of the insulin-like growth factor-I receptor tyrosine kinase. Clin Cancer Res 2009, 15:3058-3067.
  • [20]Foti M, Moukil MA, Dudognon P, Carpentier JL: Insulin and IGF-1 receptor trafficking and signalling. Novartis Found Symp 2004, 262:125-141. discussion 141–127, 265–128
  • [21]Romanelli RJ, LeBeau AP, Fulmer CG, Lazzarino DA, Hochberg A, Wood TL: Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt. J Biol Chem 2007, 282:22513-22524.
  • [22]Lin FT, Daaka Y, Lefkowitz RJ: beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem 1998, 273:31640-31643.
  • [23]Devi GR, De Souza AT, Byrd JC, Jirtle RL, MacDonald RG: Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers. Cancer Res 1999, 59:4314-4319.
  • [24]Hwa V, Oh Y, Rosenfeld RG: The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 1999, 20:761-787.
  • [25]LeRoith D, Roberts CT Jr: The insulin-like growth factor system and cancer. Cancer Lett 2003, 195:127-137.
  • [26]Beattie J, Allan GJ, Lochrie JD, Flint DJ: Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006, 395:1-19.
  • [27]Firth SM, Baxter RC: Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 2002, 23:824-854.
  • [28]Butt AJ, Dickson KA, McDougall F, Baxter RC: Insulin-like growth factor-binding protein-5 inhibits the growth of human breast cancer cells in vitro and in vivo. J Biol Chem 2003, 278:29676-29685.
  • [29]Miyake H, Nelson C, Rennie PS, Gleave ME: Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgen-independence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology 2000, 141:2257-2265.
  • [30]Xu XL, Lee TC, Offor N, Cheng C, Liu A, Fang Y, Jhanwar SC, Abramson DH, Cobrinik D: Tumor-associated retinal astrocytes promote retinoblastoma cell proliferation through production of IGFBP-5. Am J Pathol 2010, 177:424-435.
  • [31]Jones JI, D’Ercole AJ, Camacho-Hubner C, Clemmons DR: Phosphorylation of insulin-like growth factor (IGF)-binding protein 1 in cell culture and in vivo: effects on affinity for IGF-I. Proc Natl Acad Sci U S A 1991, 88:7481-7485.
  • [32]Soos MA, Whittaker J, Lammers R, Ullrich A, Siddle K: Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochem J 1990, 270:383-390.
  • [33]Moxham CP, Duronio V, Jacobs S: Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem 1989, 264:13238-13244.
  • [34]Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, Siddle K, Goldfine ID, Belfiore A: Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999, 5:1935-1944.
  • [35]Siddle K: Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 2011, 47:R1-R10.
  • [36]Peeters PH, Lukanova A, Allen N, Berrino F, Key T, Dossus L, Rinaldi S, van Gils CH, Bueno-de-Mesquita HB, Boeing H, Schulz M, Chang-Claude J, Linseisen J, Panico S, Sacerdote C, Palli D, Tumino R, Trichopoulou A, Trichopolos D, Bamia C, Larranaga N, Ardanaz E, Pera G, Quirós JR, Martínez-García C, Navarro C, Bingham SA, Khaw KT, Clavel F, Tjonneland A, Olsen A, Overvad K, Tetsche MS, Lund E, Lundin E, Berglund G, Riboli E, Kaaks R: Serum IGF-I, its major binding protein (IGFBP-3) and epithelial ovarian cancer risk: the European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer 2007, 14:81-90.
  • [37]Lukanova A, Lundin E, Toniolo P, Micheli A, Akhmedkhanov A, Rinaldi S, Muti P, Lenner P, Biessy C, Krogh V, Zeleniuch-Jacquotte A, Berrino F, Hallmans G, Riboli E, Kaaks R: Circulating levels of insulin-like growth factor-I and risk of ovarian cancer. Int J Cancer 2002, 101:549-554.
  • [38]Brokaw J, Katsaros D, Wiley A, Lu L, Su D, Sochirca O, de la Longrais IA, Mayne S, Risch H, Yu H: IGF-I in epithelial ovarian cancer and its role in disease progression. Growth Factors 2007, 25:346-354.
  • [39]King SM, Modi DA, Eddie SL, Burdette JE: Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway. J Ovarian Res 2013, 6:12.
  • [40]Sayer RA, Lancaster JM, Pittman J, Gray J, Whitaker R, Marks JR, Berchuck A: High insulin-like growth factor-2 (IGF-2) gene expression is an independent predictor of poor survival for patients with advanced stage serous epithelial ovarian cancer. Gynecol Oncol 2005, 96:355-361.
  • [41]Cardillo MR, Monti S, Di Silverio F, Gentile V, Sciarra F, Toscano V: Insulin-like growth factor (IGF)-I, IGF-II and IGF type I receptor (IGFR-I) expression in prostatic cancer. Anticancer Res 2003, 23:3825-3835.
  • [42]Durai R, Yang W, Gupta S, Seifalian AM, Winslet MC: The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis 2005, 20:203-220.
  • [43]Parker A, Cheville JC, Lohse C, Cerhan JR, Blute ML: Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma. J Urol 2003, 170:420-424.
  • [44]Chng WJ, Gualberto A, Fonseca R: IGF-1R is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia 2006, 20:174-176.
  • [45]Peyrat JP, Bonneterre J, Laurent JC, Louchez MM, Amrani S, Leroy-Martin B, Vilain MO, Delobelle A, Demaille A: Presence and characterization of insulin-like growth factor 1 receptors in human benign breast disease. Eur J Cancer Clin Oncol 1988, 24:1425-1431.
  • [46]An Y, Cai L, Wang Y, Zhu D, Guan Y, Zheng J: Local expression of insulin-like growth factor-I, insulin-like growth factor-I receptor, and estrogen receptor alpha in ovarian cancer. Onkologie 2009, 32:638-644.
  • [47]Katsaros D, Yu H, Levesque MA, Danese S, Genta F, Richiardi G, Fracchioli S, Khosravi MJ, Diamandi A, Gordini G, Diamandis EP, Massobrio M: IGFBP-3 in epithelial ovarian carcinoma and its association with clinico-pathological features and patient survival. Eur J Cancer 2001, 37:478-485.
  • [48]Torng PL, Lee YC, Huang CY, Ye JH, Lin YS, Chu YW, Huang SC, Cohen P, Wu CW, Lin CT: Insulin-like growth factor binding protein-3 (IGFBP-3) acts as an invasion-metastasis suppressor in ovarian endometrioid carcinoma. Oncogene 2008, 27:2137-2147.
  • [49]Shimasaki S, Ling N: Identification and molecular characterization of insulin-like growth factor binding proteins (IGFBP-1, −2, −3, −4, −5 and −6). Prog Growth Factor Res 1991, 3:243-266.
  • [50]Yee D: Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst 2012, 104:975-981.
  • [51]Novosyadlyy R, Lann DE, Vijayakumar A, Rowzee A, Lazzarino DA, Fierz Y, Carboni JM, Gottardis MM, Pennisi PA, Molinolo AA, Kurshan N, Mejia W, Santopietro S, Yakar S, Wood TL, LeRoith D: Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res 2010, 70:741-751.
  • [52]Evans CRL T, Chan E, Tait B, Michael SA, Day S, Stephens AW, Franke A, Poondru S, Puzanov I: Phase I dose-escalation study of continuous oral dosing of OSI-906, a dual tyrosine kinase inhibitor of insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (IR), in patients with advanced solid tumors.J Clin Oncol 2010, 28:15s. (suppl; abstr 2531).
  • [53]Karp DD, Pollak MN, Cohen RB, Eisenberg PD, Haluska P, Yin D, Lipton A, Demers L, Leitzel K, Hixon ML, Terstappen LW, Garland L, Paz-Ares LG, Cardenal F, Langer CJ, Gualberto A: Safety, pharmacokinetics, and pharmacodynamics of the insulin-like growth factor type 1 receptor inhibitor figitumumab (CP-751,871) in combination with paclitaxel and carboplatin. J Thorac Oncol 2009, 4:1397-1403.
  • [54]Boone DN, Lee AV: Targeting the insulin-like growth factor receptor: developing biomarkers from gene expression profiling. Crit Rev Oncog 2012, 17:161-173.
  • [55]Zha J, O’Brien C, Savage H, Huw LY, Zhong F, Berry L, Lewis Phillips GD, Luis E, Cavet G, Hu X, Amler LC, Lackner MR: Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther 2009, 8:2110-2121.
  • [56]Maloney EK, McLaughlin JL, Dagdigian NE, Garrett LM, Connors KM, Zhou XM, Blattler WA, Chittenden T, Singh R: An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 2003, 63:5073-5083.
  • [57]Boucher J, Tseng YH, Kahn CR: Insulin and insulin-like growth factor-1 receptors act as ligand-specific amplitude modulators of a common pathway regulating gene transcription. J Biol Chem 2010, 285:17235-17245.
  • [58]McCubrey JA, Steelman LS, Mayo MW, Algate PA, Dellow RA, Kaleko M: Growth-promoting effects of insulin-like growth factor-1 (IGF-1) on hematopoietic cells: overexpression of introduced IGF-1 receptor abrogates interleukin-3 dependency of murine factor-dependent cells by a ligand-dependent mechanism. Blood 1991, 78:921-929.
  • [59]Chisalita SI, Johansson GS, Liefvendahl E, Back K, Arnqvist HJ: Human aortic smooth muscle cells are insulin resistant at the receptor level but sensitive to IGF1 and IGF2. J Mol Endocrinol 2009, 43:231-239.
  • [60]Abercrombie M, Heaysman JE: Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res 1954, 6:293-306.
  • [61]McClatchey AI, Yap AS: Contact inhibition (of proliferation) redux. Curr Opin Cell Biol 2012, 24:685-694.
  • [62]Clarke DC, Brown ML, Erickson RA, Shi Y, Liu X: Transforming growth factor beta depletion is the primary determinant of Smad signaling kinetics. Mol Cell Biol 2009, 29:2443-2455.
  • [63]Walsh LA, Damjanovski S: IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-beta1 resulting in epithelial to mesenchymal transition. Cell Commun Signal 2011, 9:10.
  • [64]Dool CJ, Mashhedi H, Zakikhani M, David S, Zhao Y, Birman E, Carboni JM, Gottardis M, Blouin MJ, Pollak M: IGF1/insulin receptor kinase inhibition by BMS-536924 is better tolerated than alloxan-induced hypoinsulinemia and more effective than metformin in the treatment of experimental insulin-responsive breast cancer. Endocr Relat Cancer 2011, 18:699-709.
  • [65]Begley CG, Ellis LM: Drug development: Raise standards for preclinical cancer research. Nature 2012, 483:531-533.
  • [66]Furlanetto RW: Receptor-mediated endocytosis and lysosomal processing of insulin-like growth factor I by mitogenically responsive cells. Endocrinology 1988, 122:2044-2053.
  • [67]Goh LK, Sorkin A: Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol 2013, 5:a017459.
  • [68]Sehat B, Andersson S, Girnita L, Larsson O: Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 2008, 68:5669-5677.
  • [69]Vieira AV, Lamaze C, Schmid SL: Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996, 274:2086-2089.
  • [70]Reddy CC, Wells A, Lauffenburger DA: Receptor-mediated effects on ligand availability influence relative mitogenic potencies of epidermal growth factor and transforming growth factor alpha. J Cell Physiol 1996, 166:512-522.
  • [71]Starbuck C, Lauffenburger DA: Mathematical model for the effects of epidermal growth factor receptor trafficking dynamics on fibroblast proliferation responses. Biotechnol Prog 1992, 8:132-143.
  • [72]Knauer DJ, Wiley HS, Cunningham DD: Relationship between epidermal growth factor receptor occupancy and mitogenic response. Quantitative analysis using a steady state model system. J Biol Chem 1984, 259:5623-5631.
  • [73]Kanzaki S, Hilliker S, Baylink DJ, Mohan S: Evidence that human bone cells in culture produce insulin-like growth factor-binding protein-4 and −5 proteases. Endocrinology 1994, 134:383-392.
  • [74]Ohtani M, Numazaki M, Yajima Y, Fujita-Yamaguchi Y: Mechanisms of antibody-mediated insulin-like growth factor I receptor (IGF-IR) down-regulation in MCF-7 breast cancer cells. Biosci Trends 2009, 3:131-138.
  • [75]Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM, Lauffenburger DA, Wittrup KD: Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci U S A 2010, 107:13252-13257.
  • [76]Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R: Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009, 30:586-623.
  • [77]Calzone FJ, Cajulis E, Chung YA, Tsai MM, Mitchell P, Lu J, Chen C, Sun J, Radinsky R, Kendall R, Beltran PJ: Epitope-specific mechanisms of IGF1R inhibition by ganitumab. PLoS One 2013, 8:e55135.
  • [78]Beltran PJ, Mitchell P, Chung YA, Cajulis E, Lu J, Belmontes B, Ho J, Tsai MM, Zhu M, Vonderfecht S, Baserga R, Kendall R, Radinsky R, Calzone FJ: AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Mol Cancer Ther 2009, 8:1095-1105.
  • [79]Kholodenko BN, Demin OV, Moehren G, Hoek JB: Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 1999, 274:30169-30181.
  • [80]Schoeberl B, Eichler-Jonsson C, Gilles ED, Muller G: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002, 20:370-375.
  • [81]Birtwistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB, Kholodenko BN: Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol 2007, 3:144.
  • [82]Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK: Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 2009, 5:239.
  • [83]Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT: Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 2010, 70:6704-6714.
  • [84]Zhang L, Smith DW, Gardiner BS, Grodzinsky AJ: Modeling the insulin-like growth factor system in articular cartilage. PLoS One 2013, 8:e66870.
  • [85]Prasasya RD, Vang KZ, Kreeger PK: A multivariate model of ErbB network composition predicts ovarian cancer cell response to canertinib. Biotechnol Bioeng 2012, 109:213-224.
  • [86]Ghosh P, Dahms NM, Kornfeld S: Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003, 4:202-212.
  • [87]Shin SU, Friden P, Moran M, Morrison SL: Functional properties of antibody insulin-like growth factor fusion proteins. J Biol Chem 1994, 269:4979-4985.
  • [88]Pommier GJ, Remacle-Bonnet MM, Tripier SG, Garrouste FL: Differential secretory polarity of IGFBP-6 vs. IGFBP-2 and IGFBP-4 in human intestinal epithelial cells: is it a way of modulating IGF-II bioavailability towards the IGF-responsive basolateral surface? Prog Growth Factor Res 1995, 6:197-206.
  • [89]Accili D, Nakae J, Kim JJ, Park BC, Rother KI: Targeted gene mutations define the roles of insulin and IGF-I receptors in mouse embryonic development. J Pediatr Endocrinol Metab 1999, 12:475-485.
  • [90]Jurgeit A, Berlato C, Obrist P, Ploner C, Massoner P, Schmolzer J, Haffner MC, Klocker H, Huber LA, Geley S, Doppler W: Insulin-like growth factor-binding protein-5 enters vesicular structures but not the nucleus. Traffic 2007, 8:1815-1828.
  • [91]Robinson SA, Rosenzweig SA: Synthesis and characterization of biotinylated forms of insulin-like growth factor-1: topographical evaluation of the IGF-1/IGFBP-2 AND IGFBP-3 interface. Biochemistry 2004, 43:11533-11545.
  • [92]Danielsen A, Larsen E, Gammeltoft S: Chromaffin cells express two types of insulin-like growth factor receptors. Brain Res 1990, 518:95-100.
  • [93]Germain-Lee EL, Janicot M, Lammers R, Ullrich A, Casella SJ: Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J 1992, 281(Pt 2):413-417.
  • [94]Lammers R, Gray A, Schlessinger J, Ullrich A: Differential signalling potential of insulin- and IGF-1-receptor cytoplasmic domains. EMBO J 1989, 8:1369-1375.
  文献评价指标  
  下载次数:23次 浏览次数:10次