BMC Pharmacology and Toxicology | |
Conditional disruption of interactions between Gαi2 and regulator of G protein signaling (RGS) proteins protects the heart from ischemic injury | |
Richard R Neubig1  Boyd R Rorabaugh3  Kuljeet Kaur2  Susan M Wade2  Raelene A Charbeneau2  Xinyan Huang2  Sergio Parra2  | |
[1] Department of Pharmacology and Toxicology, B440 Life Sciences, Michigan State University, 1355 Bogue St, East Lansing, MI 48824, USA;Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA;Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University College of Pharmacy, Ada, OH 45810, USA | |
关键词: RGS; Regulator of G protein signaling; cAMP inhibition; Mutation; Cre-LoxP; Ischemia-reperfusion; G protein coupled receptors; | |
Others : 797488 DOI : 10.1186/2050-6511-15-29 |
|
received in 2014-02-18, accepted in 2014-05-28, 发布年份 2014 | |
【 摘 要 】
Background
Regulator of G protein signaling (RGS) proteins suppress G protein coupled receptor signaling by catalyzing the hydrolysis of Gα-bound guanine nucleotide triphosphate. Transgenic mice in which RGS-mediated regulation of Gαi2 is lost (RGS insensitive Gαi2G184S) exhibit beneficial (protection against ischemic injury) and detrimental (enhanced fibrosis) cardiac phenotypes. This mouse model has revealed the physiological significance of RGS/Gαi2 interactions. Previous studies of the Gαi2G184S mutation used mice that express this mutant protein throughout their lives. Thus, it is unclear whether these phenotypes result from chronic or acute Gαi2G184S expression. We addressed this issue by developing mice that conditionally express Gαi2G184S.
Methods
Mice that conditionally express RGS insensitive Gαi2G184S were generated using a floxed minigene strategy. Conditional expression of Gαi2G184S was characterized by reverse transcription polymerase chain reaction and by enhancement of agonist-induced inhibition of cAMP production in isolated cardiac fibroblasts. The impact of conditional RGS insensitive Gαi2G184S expression on ischemic injury was assessed by measuring contractile recovery and infarct sizes in isolated hearts subjected to 30 min ischemia and 2 hours reperfusion.
Results
We demonstrate tamoxifen-dependent expression of Gαi2G184S, enhanced inhibition of cAMP production, and cardioprotection from ischemic injury in hearts conditionally expressing Gαi2G184S. Thus the cardioprotective phenotype previously reported in mice expressing Gαi2G184S does not require embryonic or chronic Gαi2G184S expression. Rather, cardioprotection occurs following acute (days rather than months) expression of Gαi2G184S.
Conclusions
These data suggest that RGS proteins might provide new therapeutic targets to protect the heart from ischemic injury. We anticipate that this model will be valuable for understanding the time course (chronic versus acute) and mechanisms of other phenotypic changes that occur following disruption of interactions between Gαi2 and RGS proteins.
【 授权许可】
2014 Parra et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140706060728892.pdf | 2600KB | download | |
Figure 6. | 131KB | Image | download |
Figure 5. | 64KB | Image | download |
Figure 4. | 88KB | Image | download |
Figure 3. | 73KB | Image | download |
Figure 2. | 79KB | Image | download |
Figure 1. | 95KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Hörnquist CE, Lu X, Rogers-Fani PM, Rudolph U, Shappell S, Birnbaumer L, Harriman GR: G(alpha)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Th1-type cytokines. J Immunol 1997, 158:1068-1077.
- [2]DeGeorge BR Jr, Gao E, Boucher M, Vinge LE, Martini JS, Raake PW, Chuprun JK, Harris DM, Kim GW, Soltys S, Eckhart AD, Koch WJ: Targeted inhibition of cardiomyocyte Gi signaling enhances susceptibility to apoptotic cell death in response to ischemic stress. Circulation 2008, 117:1378-1387.
- [3]Nagata K, Ye C, Jain M, Milstone DS, Liao R, Mortensen RM: Galpha(i2) but not Galpha(i3) is required for muscarinic inhibition of contractility and calcium currents in adult cardiomyocytes. Circ Res 2000, 87:903-909.
- [4]Inoue Y, Yao L, Hopf FW, Fan P, Jiang Z, Bonci A, Diamond I: Nicotine and ethanol activate protein kinase A synergistically via G(i) betagamma subunits in nucleus accumbens/ventral tegmental cocultures: the role of dopamine D(1)/D(2) and adenosine A(2A) receptors. J Pharmacol Exp Ther 2007, 322:23-29.
- [5]Talbot JN, Jutkiewicz EM, Graves SM, Clemans CF, Nicol MR, Mortensen RM, Huang X, Neubig RR, Traynor JR: RGS inhibition at G(alpha)i2 selectively potentiates 5-HT1A-mediated antidepressant effects. Proc Natl Acad Sci U S A 2010, 107:11086-11091.
- [6]Kimple AJ, Bosch DE, Giguere PM, Siderovski DP: Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 2011, 2011(63):728-749.
- [7]Sjogren B, Blazer LL, Neubig RR: Regulators of G protein signaling proteins as targetes for drug discovery. Prog Mol Biol Transl Sci 2010, 91:81-119.
- [8]Huang X, Fu Y, Charbeneau RA, Saunders TL, Taylor DK, Hankenson KD, Russell MW, D’Alecy LG, Neubig RR: Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive G184S Gnai2 allele. Mol Cell Biol 2006, 26:6870-6879.
- [9]Fu Y, Zhong H, Nanamori M, Mortensen RM, Huang X, Lan K, Neubig RR: RGS-insensitive G-protein mutations to study the role of endogenous RGS proteins. Methods Enzymol 2004, 389:229-243.
- [10]Fu Y, Huang X, Piao L, Lopatin AN, Neubig RR: Endogenous RGS proteins modulate SA and AV nodal functions in isolated heart: implications for sick sinus syndrome and AV block. Am J Physiol Heart Circ Physiol 2007, 292:H2532-H2539.
- [11]Fu Y, Huang X, Zhong H, Mortensen RM, D’Alecy LG, Neubig RR: Endogenous RGS proteins and Galpha subtypes differentially control muscarinic and adenosine-mediated chronotropic effects. Circ Res 2006, 98:659-666.
- [12]Kaur K, Parra S, Chen R, Charbeneau RA, Wade SM, Jay PY, Neubig RR: Galpha(i2) signaling: friend or foe in cardiac injury and heart failure? Naunyn Schmiedebergs. Arch Pharmacol 2012, 38:443-453.
- [13]Waterson RE, Thompson CG, Mabe NW, Kaur K, Talbot JN, Neubig RR, Rorabaugh BR: Galpha(i2)-mediated protection from ischaemic injury is modulated by endogenous RGS proteins in the mouse heart. Cardiovasc Res 2011, 91:45-52.
- [14]Huang X, Charbeneau RA, Fu Y, Kaur K, Gerin I, MacDougald OA, Neubig RR: Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele. Diabetes 2008, 57:77-85.
- [15]Xin HB, Deng KY, Shui B, Qu S, Sun Q, Lee J, Greene KS, Wilson J, Yu Y, Feldman M, Kotlikoff MI: Gene trap and gene inversion methods for conditional gene inactivation in the mouse. Nucleic Acids Res 2005, 33:e14.
- [16]Wingate AD, Martin KJ, Hunter C, Carr JM, Clacher C, Arthur JS: Generation of a conditional CREB Ser133Ala knockin mouse. Genesis 2009, 47:688-696.
- [17]Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML: Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 2000, 29:52-54.
- [18]O’Connell TD, Rodrigo MC: Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Methods Mol Biol 2007, 357:271-296.
- [19]Anastassiadis K, Glaser S, Kranz A, Berhardt K, Stewart AF: A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol 2010, 2010(477):109-123.
- [20]Hameyer D, Loonstra A, Eshkind L, Schmitt S, Antunes C, Groen A, Bindels E, Jonkers J, Krimpenfort P, Meuwissen R, Rijswijk L, Bex A, Berns A, Bockamp E: Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol Genomics 2007, 31:32-41.
- [21]Rodríguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM: High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 2000, 25:139-140.
- [22]Strathmann M, Wilkie TM: Simon MI (1989) Diversity of the G-protein family: sequences from five additional alpha subunits in the mouse. Proc Natl Acad Sci U S A 1989, 86:7407-7409.
- [23]Sullivan KA, Liao YC, Alborzi A, Beiderman B, Chang FH, Masters SB, Levinson AD, Bourne HR: Inhibitory and stimulatory G proteins of adenylate cyclase: cDNA and amino acid sequences of the alpha chains. Proc Natl Acad Sci U S A 1986, 83:6687-6691.
- [24]Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG: Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 2010, 115:3589-3597.
- [25]Dizayee S, Kaestner S, Kuck F, Hein P, Klein C, Piekorz RP, Meszaros J, Matthes J, Nürnberg B, Herzig S: Gαi2- and Gαi3-specific regulation of voltage-dependent L-type calcium channels in cardiomyocytes. PLoS One 2011, 6:e24979.
- [26]Foerster K, Groner F, Matthes J, Koch WJ, Birnbaumer L, Herzig S: Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through beta 2-adrenoceptors. Proc Natl Acad Sci U S A 2003, 100:14475-14480.
- [27]Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T, Rode A, Heimann C, Faust N, Kauselmann G, Schoor M, Jaenisch R, Rajewsky K, Kuhn R, Schwenk F: Rapid generation of inducible mouse mutants. Nucleic Acids Res 2003, 31:e11-e13.