BMC Genomics | |
Longissimus dorsi transcriptome analysis of purebred and crossbred Iberian pigs differing in muscle characteristics | |
Luis Silió1  Clemente López-Bote2  Ana Isabel Rey2  Beatriz Isabel2  Carmen Rodríguez1  Ana Isabel Fernández1  Miriam Ayuso2  Yolanda Núñez1  Almudena Fernández1  Rita Benítez1  Cristina Óvilo1  | |
[1] Dpto Mejora Genética Animal, INIA, Ctra Coruña km 7.5, Madrid 28040, Spain;Dpto Producción Animal, Facultad de Veterinaria, UCM, Madrid, Spain | |
关键词: Metabolism; Meat quality; Growth; Transcription factors; Genetic type; Transcriptome; Iberian pig; | |
Others : 1216759 DOI : 10.1186/1471-2164-15-413 |
|
received in 2013-12-19, accepted in 2014-05-27, 发布年份 2014 | |
【 摘 要 】
Background
The two main genetic types in Iberian pig production show important phenotypic differences in growth, fattening and tissue composition since early developmental stages. The objective of this work was the evaluation of muscle transcriptome profile in piglets of both genetic types, in order to identify genes, pathways and regulatory factors responsible for their phenotypic differences. Contemporary families coming from pure Iberian pigs (IB) or from crossing with Duroc boars (DU×IB) were generated. Piglets (14 from each genetic type) were slaughtered at weaning (28 days) and longissimus dorsi was sampled for composition and gene expression studies. RNA was obtained and hybridized to Affymetrix Porcine Genechip expression arrays.
Results
Loin muscle chemical composition showed significant differences between genetic types in intramuscular fat content (6.1% vs. 4.3% in IB and DUxIB animals, respectively, P = 0.009) and in saturated (P = 0.019) and monounsaturated fatty acid proportions (P = 0.044). The statistical analysis of gene expression data allowed the identification of 256 differentially expressed (DE) genes between genetic types (FDR < 0.10), 102 upregulated in IB and 154 upregulated in DU×IB. Transcript differences were validated for a subset of DE genes by qPCR. We observed alteration in biological functions related to extracellular matrix function and organization, cellular adhesion, muscle growth, lipid metabolism and proteolysis. Candidate genes with known effects on muscle growth were found among the DE genes upregulated in DU×IB. Genes related to lipid metabolism and proteolysis were found among those upregulated in IB. Regulatory factors (RF) potentially involved in the expression differences were identified by calculating the regulatory impact factors. Twenty-nine RF were found, some of them with known relationship with tissue development (MSTN, SIX4, IRX3), adipogenesis (CEBPD, PPARGC1B), or extracellular matrix processes (MAX, MXI1). Correlation among the expression of these RF and DE genes show relevant differences between genetic types.
Conclusion
These results provide valuable information about genetic mechanisms determining the phenotypic differences on growth and meat quality between the genetic types studied, mainly related to the development and function of the extracellular matrix and also to some metabolic processes as proteolysis and lipid metabolism. Transcription factors and regulatory mechanisms are proposed for these altered biological functions.
【 授权许可】
2014 Óvilo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150702070913583.pdf | 1732KB | download | |
Figure 4. | 64KB | Image | download |
Figure 3. | 53KB | Image | download |
Figure 2. | 59KB | Image | download |
Figure 1. | 73KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Verbeke W, Van Oeckel MJ, Warnants N, Viaene J, Boucque CV: Consumer perceptions, facts and possibilities to improve acceptability of health and sensory characteristics of pork. Meat Sci 1999, 53:77-99.
- [2]Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM: Fat deposition, fatty acid composition and meat quality: a review. Meat Sci 2008, 78(4):343-358.
- [3]Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, Spurlock M, Novakofski J, Fernyhough ME, Bergen WG: The biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci 2009, 87:1218-1246.
- [4]Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW: Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4(2):303-319.
- [5]Zheng GS, Mei ZS: Physiology, affecting factors and strategies for control of Pig meat intramuscular Fat. Recent Pat Food Nutr Agric 2009, 1:59-74.
- [6]Lee YB, Kauffman RG: Cellular and enzymatic changes with animal growth in porcine intramuscular adipose tissue. J Anim Sci 1974, 38(3):532-537.
- [7]Cianzio DS, Topel DG, Whitehurst GB, Beitz DC, Self HL: Adipose tissue growth and cellularity: changes in bovine adipocyte size and number. J Anim Sci 1985, 60(4):970-976.
- [8]Hood RL, Allen CE: Cellularity of porcine adipose tissue: effects of growth and adiposity. J Lipid Res 1977, 18:275-284.
- [9]Li WZ, Zhao SM, Huang Y, Yang MH, Pan HB, Zhang X, Ge CR, Gao SZ: Expression of lipogenic genes during porcine intramuscular preadipocyte differentiation. Res Vet Sci 2012, 93(3):1190-1194.
- [10]Pena RN, Quintanilla R, Manunza A, Gallardo D, Casellas J, Amills M: Application of the microarray technology to the transcriptional analysis of muscle phenotypes in pigs. Anim Genet 2014. Published online: 27 MAR 2014. doi: 10.1111/age.12146
- [11]Wimmers K, Murani E, te Pas MF, Chang KC, Davoli R, Merks JW, Henne H, Muraniova M, da Costa N, Harlizius B, Schellander K, Böll I, Braglia S, de Wit AA, Cagnazzo M, Fontanesi L, Prins D, Ponsuksili S: Associations of functional candidate genes derived from gene-expression profiles of prenatal porcine muscle tissue with meat quality and muscle deposition. Anim Genet 2007, 38:474-484.
- [12]Kim NK, Park HR, Lee HC, Yoon D, Son ES, Kim YS, Kim SR, Kim OH, Lee CS: Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mamm Genome 2010, 21:307-319.
- [13]Murgiano L, D’Alessandro A, Egidi MG, Crisa A, Prosperini G, Timperio AM, Valentini A, Zolla L: Proteomics and transcriptomics investigation on longissimus muscles in Large White and Casertana pig breeds. J Proteome Res 2010, 9:6450-6466.
- [14]Zhao X, Mo D, Li A, Gong W, Xiao S, Zhang Y, Qin L, Niu Y, Guo Y, Liu X, Cong P, He Z, Wang C, Li J, Chen Y: Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness. PLoS One 2011, 6:e19774.
- [15]Damon M, Wyszynska-Koko J, Vincent A, Herault F, Lebret B: Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure. PLoS One 2012, 7(3):e33763.
- [16]Yu K, Shu G, Yuan F, Zhu X, Gao P, Wang S, Wang L, Xi Q, Zhang S, Zhang Y, Li Y, Wu T, Yuan L, Jiang Q: Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality. Int J Biol Sci 2013, 9(1):108-118.
- [17]Cagnazzo M, te Pas MF, Priem J, de Wit AA, Pool MH, Davoli R, Russo V: Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J Anim Sci 2006, 84(1):1-10.
- [18]Davoli R, Braglia S, Russo V, Varona L, te Pas MF: Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet 2011, 128(1):15-27.
- [19]Lin CS, Hsu CW: Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J Anim Sci 2005, 83:2075-2086.
- [20]Bentzinger CF, Wang YX, Rudnicki MA: Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 2012, 4:a008342.
- [21]Rodríguez-López JM, Pardo C, Bee G: Hyperplastic muscle growth occurs from birth to weaning in pigs. J Anim Sci 2010, 88(Suppl. 2):364.
- [22]López-Bote C: Sustained utilization of Iberian pig breed. Meat Sci 1998, 49:S17-S27.
- [23]Ventanas S, Ventanas J, Jurado A, Estévez M: Quality traits in muscle biceps femoris and back-fat from purebred Iberian and reciprocal Iberian x Duroc crossbred pigs. Meat Sci 2006, 73:651-659.
- [24]Serrano MP, Valencia DG, Nieto M, Lazaro R, Mateos GG: Influence of sex and terminal sire line on performance and carcass and meat quality of Iberian pigs reared under intensive production systems. Meat Sci 2008, 78:420-428.
- [25]Ferraz ALJ, Ojeda A, López-Béjar M, Fernandes LT, Castelló A, Folch JM, Pérez-Enciso M: Transcriptome architecture across tissues in the pig. BMC Genomics 2008, 9:173. BioMed Central Full Text
- [26]Pérez-Enciso M, Ferraz ALJ, Ojeda A, López-Béjar M: Impact of breed and sex on porcine endocrine transcriptome: a bayesian biometrical analysis. BMC Genomics 2009, 10:89. BioMed Central Full Text
- [27]Tsai S, Mir B, Martin AC, Estrada JL, Bischoff SR, Hsieh WP, Cassady JP, Freking BA, Nonneman DJ, Rohrer GA, Piedrahita JA: Detection of transcriptional difference of porcine imprinted genes using different microarray platforms. BMC Genomics 2006, 7:328. BioMed Central Full Text
- [28]Miron M, Woody OZ, Marcil A, Murie C, Sladek R, Nadon R: A methodology for global validation of microarray experiments. BMC Bioinforma 2006, 7:333. BioMed Central Full Text
- [29]Huang DW, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 2009, 4:44-57.
- [30]Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L: A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 2003, 425(6960):832-836.
- [31]Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Löwer A, Langer A, Merdes G, Paro R, Masters CL, Müller U, Kins S, Beyreuther K: Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 2005, 24(20):3624-3634.
- [32]Thinakaran G, Koo EH: Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008, 283:29615-29619.
- [33]Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F: Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol 1994, 5:855-863.
- [34]Bílek K, Knoll A, Stratil A, Svobodová K, Horák P, Bechyňová R, Van Poucke M, Peelman LJ: Analysis of mRNA expression of CNN3, DCN, FBN2, POSTN, SPARC and YWHAQ genes in porcine foetal and adult skeletal muscles K. Czech J Anim Sci 2008, 53(5):181-186.
- [35]Zhang L, Reidy SP, Nicholson TE, Lee HJ, Majdalawieh A, Webber C, Stewart BR, Dolphin P, Ro HS: The role of AEBP1 in Sex-specific diet-induced obesity. Mol Med 2005, 11(1–12):39-47.
- [36]Majdalawieh A, Ro HS: PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl Recept Signal 2010, 8:e004.
- [37]Gagnon A, Abaiian KJ, Crapper T, Layne MD, Sorisky A: Down-regulation of aortic carboxypeptidase-like protein during the early phase of 3 T3-L1 adipogenesis. Endocrinology 2002, 143(7):2478-2485.
- [38]Velleman SG: Extracellular matrix regulation of skeletal muscle formation. J Anim Sci 2012, 90:936-941.
- [39]Clause KC, Barke TH: Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013, 24(5):830-833.
- [40]Boudreau NJ, Jones PL: Extracellular matrix and integrin signalling: the shape of things to come. Biochem J 1999, 339:481-488.
- [41]Watt F, Huck WTS: Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 2013, 14:467-473.
- [42]Du M, Carlin KM: Extracellular matrix in skeletal muscle development and meat quality. J Anim Sci 2012, 90:922-923.
- [43]Stupack DG, Cheresh DA: Integrins and angiogenesis. Curr Top Dev Biol 2004, 64:207-238.
- [44]Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V, Chatterjee K, Garkavtsev I, Jain RK: Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 2003, 93(9):e88-e97.
- [45]Karunaratne JF, Ashton CJ, Stickland NC: Fetal programming of fat and collagen in porcine skeletal muscles. J Anat 2005, 207:763-768.
- [46]Karunaratne JP, Bayol SA, Ashton CJ, Simbi BH, Stickland NC: Potential molecular mechanisms for the prenatal compartmentalisation of muscle and connective tissue in pigs. Differentiation 2009, 77:290-297.
- [47]Hausman GJ, Richardson RL, Simmen FA: Expression of insulin-like growth factor binding proteins (IGFBPs) before and during the hormone sensitive period of adipose tissue development in the fetal pig. Growth Dev Aging 2000, 64:51-67.
- [48]Hausman GJ, Dodson MV: Stromal vascular cells and adipogenesis: cells within adipose depots regulate adipogenesis. J Genomics 2012, 1:56-66.
- [49]Purslow PP, Archile-Contreras AC, Cha MC: Manipulating meat tenderness by increasing the turnover of intramuscular connective tissue. J Anim Sci 2012, 90:950-959.
- [50]Hausman GJ: Meat science and muscle biology symposium: the influence of extracellular matrix on intramuscular and extramuscular adipogenesis. J Anim Sci 2012, 90(3):942-949.
- [51]Pena RN, Noguera JL, Casellas J, Díaz I, Fernández AI, Folch JM, Ibáñez-Escriche N: Transcriptional analysis of intramuscular fatty acid composition in the longissimus thoracis muscle of Iberian × Landrace back-crossed pigs. Anim Genet 2013, 44(6):648-660.
- [52]Hamill RM, Aslan O, Mullen AM, O’Doherty JV, McBryan J, Morris DG, Sweeney T: Transcriptome analysis of porcine M. semimembranosus divergent in intramuscular fat as a consequence of dietary protein restriction. BMC Genomics 2013, 14:453. BioMed Central Full Text
- [53]Lähdesmäki H, Shmulevich I, Dunmire V, Yli-Harja O, Zhang W: In silico microdissection of microarray data from heterogeneous cell populations. BMC Bioinforma 2005, 6:54. BioMed Central Full Text
- [54]Urs S, Smith C, Campbell B, Saxton AM, Taylor J, Zhang B, Snoddy J, Jones Voy B, Moustaid-Moussa N: Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr 2004, 134(4):762-770.
- [55]Wang Y, Hudak C, Sul HS: Role of preadipocyte factor 1 in adipocyte differentiation. Clin Lipidol 2010, 5(1):109-115.
- [56]Glickman MH, Ciechanover A: The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002, 82(2):373-428.
- [57]Rivera-Ferre MG, Aguilera JF, Nieto R: Muscle fractional protein synthesis is higher in Iberian than in Landrace growing pigs fed adequate or lysine-deficient diets. J Nutr 2005, 135(3):469-478.
- [58]Rivera-Ferre MG, Aguilera JF, Nieto R: Differences in whole-body protein turnover between Iberian and Landrace pigs fed adequate or lysine-deficient diets. J Anim Sci 2006, 84(12):3346-3355.
- [59]Almudevar A, Klebanov LB, Qiu X, Salzman P, Yakovlev AY: Utility of correlation measures in analysis of gene expression. NeuroRx 2006, 3(3):384-395.
- [60]Reverter A, Hudson NJ, Nagaraj SH, Pérez-Enciso M, Dalrymple BP: Regulatory impact factors: unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 2010, 26(7):896-904.
- [61]Hudson NJ, Dalrymple BP, Reverter T: Beyond differential expression: the quest for causal mutations and effector molecules. BMC Genomics 2012, 13:356. BioMed Central Full Text
- [62]Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Genesis, Modulation, and Regeneration of Skeletal Muscle. In Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Available from: http://www.ncbi.nlm.nih.gov/books/NBK26853/ webcite
- [63]Heldin CH, Miyazono K, ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390(6659):465-471.
- [64]Liu T, Feng XH: Regulation of TGF-β Signaling by Protein Phosphatases. Biochem J 2010, 430(2):191-198.
- [65]Hudson N, Reverter A, Dalrymple B: A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol 2009, 5:e1000382.
- [66]Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS: Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 2005, 25(2):706-715.
- [67]Sun J, He H, Pillai S, Xiong Y, Challa S, Xu L, Chellappan S, Yang S: GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem 2013, 288(52):36971-36982.
- [68]Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le Grand F, Sgarioto N, Guernec A, Schmitt A, Cagnard N, Huang R, Legay C, Guillet-Deniau I, Maire P: Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 2011, 359(2):303-320.
- [69]Grifone R, Demignon J, Giordani J, Niro C, Souil E, Bertin F, Laclef C, Xu PX, Maire P: Eya1 and Eya2 proteins are required for hypaxial somitic myogenesis in the mouse embryo. Dev Biol 2007, 302(2):602-616.
- [70]Kaczynski J, Cook T, Urrutia R: Sp1- and Krüppel-like transcription factors. Genome Biol 2003, 4:206. BioMed Central Full Text
- [71]Jang SM, Kim JW, Kim D, Kim CH, An JH, Choi KH, Rhee S: Sox4-mediated caldesmon expression facilitates skeletal myoblast differentiation. J Cell Sci 2013. doi:10.1242/jcs.131581
- [72]Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML: A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 2001, 20:1739-1753.
- [73]Lee T, Ziff EB: Mxi1 is a repressor of the c-myc promoter and reverses activation by USF. J Biol Chem 1999, 274:595-606.
- [74]Gill RM, Gabor TV, Couzens AL, Schei MP: The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation. Mol Cell Biol 2013, 33(3):498-513.
- [75]Guardiola-Serrano F, Haendeler J, Lukosz M, Sturm K, Melchner H, Altschmied J: Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration. Biochem Biophys Res Commun 2008, 376(4):748-752.
- [76]Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nóbrega MA: Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 2014, 507:371-375.
- [77]Handschin C, Spiegelman BM: Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 2006, 27:728-735.
- [78]Hishida T, Nishizuka M, Osada S, Imagawa M: The role of C/EBPdelta in the early stages of adipogenesis. Biochimie 2009, 91(5):654-657.
- [79]Raichur S, Fitzsimmons RL, Myers SA, Pearen MA, Lau P, Eriksson N, Wang SM, Muscat GEO: Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle. Nucleic Acids Res 2010, 38(13):4296-4312.
- [80]Fan H, Cinar MU, Phatsara C, Tesfaye D, Tholen E, Looft C, Schellander K: Molecular mechanism underlying the differential MYF6 expression in postnatal skeletal muscle of Duroc and Pietrain breeds. Gene 2011, 486(1–2):8-14.
- [81]Parakati R, DiMario JX: Repression of myoblast proliferation and fibroblast growth factor receptor 1 promoter activity by KLF10 protein. J Biol Chem 2013, 288(19):13876-13884.
- [82]Birsoy K, Berry R, Wang T, Ceyhan O, Tavazoie S, Friedman JM, Rodeheffer MS: Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development 2011, 138(21):4709-4719.
- [83]Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 2008, 9(1):S4. doi:10.1186/gb-2008-9-s1-s4 BioMed Central Full Text
- [84]Ohnishi YN, Sakumi K, Yamazaki K, Ohnishi YH, Miura T, Tominaga Y, Nakabeppu Y: Antagonistic regulation of cell-matrix adhesion by FosB and DeltaFosB/Delta2DeltaFosB encoded by alternatively spliced forms of fosB transcripts. Mol Biol Cell 2008, 19(11):4717-4729.
- [85]Speakman JR: Functional analysis of seven genes linked to body mass index and adiposity by genome-wide association studies: a review. Hum Hered 2013, 75(2–4):57-79.
- [86]Cantile M, Schiavo G, Terracciano L, Cillo C: Homeobox genes in normal and abnormal vasculogenesis. Nutr Metab Cardiovasc Dis 2008, 18:651-658.
- [87]Bernot D, Barruet E, Poggi M, Bonardo B, Alessi MC, Peiretti F: Down-regulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) expression is necessary for adipocyte differentiation. J Biol Chem 2010, 285(9):6508-6514.
- [88]Saulnier N, Puglisi MA, Lattanzi W, Castellini L, Pani G, Leone G, Alfieri S, Michetti F, Piscaglia AC, Gasbarrini A: Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation. Cytotherapy 2011, 13(3):329-340.
- [89]Oldham JM, Osepchook CC, Jeanplong F, Falconer SJ, Matthews KG, Conaglen JV, Gerrard DF, Smith HK, Wilkins RJ, Bass JJ, McMahon CD: The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone. J Physiol 2009, 587:669-677.
- [90]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
- [91]Marmer WN, Maxwell RJ: Dry column method for the quantitative extraction and simultaneous class separation of lipids from muscle tissue. Lipids 1981, 16:365-371.
- [92]López-Bote CJ, Rey A, Ruiz J, Isabel B, Sanz Arias R: Effects of feeding diets high in monounsaturated fatty acids and α-tocopheryl acetate to rabbits on resulting carcass fatty acid profile and lipid oxidation. Anim Sci 1997, 64:177-186.
- [93]Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FCP, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M: Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 2001, 29:365-371.
- [94]Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A: NCBI GEO: archive for functional genomics data sets—update. Nucl Acids Res 2013, 41(D1):D991-D995. http://www.ncbi.nlm.nih.gov/geo/ webcite
- [95]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
- [96]Xu X, Zhao Y, Simon R: Gene Set Expression Comparison kit for BRB-ArrayTools. Bioinformatics 2008, 24:137-139.
- [97]Hackstadt AJ, Hess AM: Filtering for increased power for microarray data analysis. BMC Bioinforma 2009, 10:11. doi:10.1186/1471-2105-10-11 BioMed Central Full Text
- [98]Casellas J, Ibáñez-Escriche N, Martínez-Giner M, Varona L: GEAMM v. 1.4: a versatile program for mixed model analysis of gene expression data. Anim Genet 2008, 39:89-90.
- [99]Gelfand AE, Smith AFM: Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 1990, 85:398-409.
- [100]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 1995, 57:289-300.
- [101]Moskvina V, Schmidt KM: On multiple-testing correction in genome-wide association studies. Genet Epidemiol 2008, 32(6):567-573.
- [102]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [103]Calvano SE, Wenzhong X, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF: A network-based analysis of systemic inflammation in humans. Nature 2005, 437:1032-1037.
- [104]Perez-Montarelo D, Hudson NJ, Fernandez AI, Ramayo-Caldas Y, Dalrymple BP: Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome. PLoS One 2012, 7(9):e46159. doi:10.1371/journal.pone.0046159
- [105]Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009, 10(4):252-263.
- [106]Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub CO, Forrest AR, Gough J, Grimmond S, Han JH, Hashimoto T, Hide W, Hofmann O, Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E, MacPherson CR, Ogawa C, Radovanovic A, Schwartz A, Teasdale RD: An atlas of combinatorial transcriptional regulation in mouse and Man. Cell 2010, 141:369-369.
- [107]Vandesompele J, De Preter K, Pattyn F, Pappe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:7.
- [108]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 2001, 29:2002-2007.