期刊论文详细信息
BMC Evolutionary Biology
Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal
Antónia Monteiro1  Adriana D Briscoe2  Xiaoling Tong1  Andrew Everett1 
[1] Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT 06511, USA;Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
关键词: Optics;    Vision;    Allometry;    Body size;    Phenotypic plasticity;    Temperature-size rule;    Sexual dimorphism;    Opsin;    Ommatidia;    Reaction norm;    Bicyclus anynana;   
Others  :  1139979
DOI  :  10.1186/1471-2148-12-232
 received in 2012-08-13, accepted in 2012-11-28,  发布年份 2012
PDF
【 摘 要 】

Background

Animals often display phenotypic plasticity in morphologies and behaviors that result in distinct adaptations to fluctuating seasonal environments. The butterfly Bicyclus anynana has two seasonal forms, wet and dry, that vary in wing ornament brightness and in the identity of the sex that performs the most courting and choosing. Rearing temperature is the cue for producing these alternative seasonal forms. We hypothesized that, barring any developmental constraints, vision should be enhanced in the choosy individuals but diminished in the non-choosy individuals due to physiological costs. As a proxy of visual performance we measured eye size, facet lens size, and sensitivity to light, e.g., the expression levels of all opsins, in males and females of both seasonal forms.

Results

We found that B. anynana eyes displayed significant sexual dimorphism and phenotypic plasticity for both morphology and opsin expression levels, but not all results conformed to our prediction. Males had larger eyes than females across rearing temperatures, and increases in temperature produced larger eyes in both sexes, mostly via increases in facet number. Ommatidia were larger in the choosy dry season (DS) males and transcript levels for all three opsins were significantly lower in the less choosy DS females.

Conclusions

Opsin level plasticity in females, and ommatidia size plasticity in males supported our visual plasticity hypothesis but males appear to maintain high visual function across both seasons. We discuss our results in the context of distinct sexual and natural selection pressures that may be facing each sex in the wild in each season.

【 授权许可】

   
2012 Everett et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324032405622.pdf 2573KB PDF download
Figure 6. 81KB Image download
Figure 5. 48KB Image download
Figure 4. 189KB Image download
Figure 3. 52KB Image download
Figure 2. 68KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Bradshaw AD: Evolutionary Significance of Phenotypic Plasticity in Plants. In Advances in Genetics. 13th edition. Edited by Caspari EW. New York: Academic; 1956:115-155.
  • [2]Shapiro AM: Seasonal polyphenism. In Evolutionary Biology. 9th edition. Edited by Hecht MK, Steere WC, Wallace B. New York; London: Plenum Press; 1976.
  • [3]Brakefield PM, Reitsma N: Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol Entomol 1991, 16:291-303.
  • [4]Robertson KA, Monteiro A: Female Bicyclus anynana butterflies choose males on the basis of their UV-reflective dorsal eyespot pupils. Proc R Soc B 2005, 272:1541-1546.
  • [5]Prudic KL, Jeon C, Cao H, Monteiro A: Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science 2011, 331:73-75.
  • [6]Vanhoutte KJA, Eggen BJL, Janssen JJM, Stavenga DG: Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana. Insect Biochem Molec Biol 2002, 32(11):1383-1390.
  • [7]Kinoshita M, Sato M, Arikawa K: Spectral receptors of nymphalid butterflies. Naturwissenschaften 1997, 84(5):199-201.
  • [8]Stalleicken J, Labhart T, Mouritsen H: Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006, 192(3):321-331.
  • [9]Laughlin SB: Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 2001, 11(4):475-480.
  • [10]Niven JE, Laughlin SB: Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 2008, 211(11):1792-1804.
  • [11]Land MF, Nilsson D-E: Animal Eyes. Oxford: Oxford University Press; 2002.
  • [12]Rutowski RL, Gislen L, Warrant EJ: Visual acuity and sensitivity increase allometrically with body size in butterflies. Arthropod Struct Dev 2009, 38(2):91-100.
  • [13]Snyder AW: Acuity of compound eyes - physical limitations and design. J Comp Physiol 1977, 116(2):161-182.
  • [14]Niven JE, Anderson JC, Laughlin SB: Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol 2007, 5(4):828-840.
  • [15]Tan SJ, Amos W, Laughlin SB: Captivity selects for smaller eyes. Curr Biol 2005, 15(14):R540-R542.
  • [16]Fong DW, Kane TC, Culver DC: Vestigialization and loss of nonfunctional characters. Annu Rev Ecol Syst 1995, 26:249-268.
  • [17]Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, Blumstein DT, Coss RG, Donohue K, Foster SA: Relaxed selection in the wild. Trends Ecol Evol 2009, 24(9):487-496.
  • [18]Birch DG, Wen Y, Locke K, Hood DC: Rod sensitivity, cone sensitivity, and photoreceptor layer thickness in retinal degenerative diseases. Invest Ophthalmol Vis Sci 2011, 52:7141-7147.
  • [19]Rangaswamy NV, Patel HM, Locke KG, Hood DC, Birch DG: A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2010, 51:4213-4219.
  • [20]Pohl N, Sison-Mangus MP, Yee EN, Liswi SW, Briscoe AD: Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies. BMC Evol Biol 2009, 9:99. BioMed Central Full Text
  • [21]Stavenga DG: Reflections on colourful ommatidia of butterfly eyes. J Exp Biol 2002, 205(8):1077-1085.
  • [22]Windig JJ: Reaction norms and the genetic-basis of phenotypic plasticity in the wing pattern of the butterfly Bicyclus anynana. J Evol Biol 1994, 7(6):665-695.
  • [23]Frankino WA, Zwaan BJ, Stern DL, Brakefield PM: Natural selection and developmental constraints in the evolution of allometries. Science 2005, 307(5710):718-720.
  • [24]Merry JW, Morehouse NI, Yturralde K, Rutowski RL: The eyes of a patrolling butterfly: visual field and eye structure in the orange Sulphur, Colias eurytheme (Lepidoptera, Pieridae). J Insect Physiol 2006, 52(3):240-248.
  • [25]Rutowski R, Warrant E: Visual field structure in the empress leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): dimensions and regional variation in acuity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2002, 188(1):1-12.
  • [26]Stavenga DG, Kinoshita M, Yang EC, Arikawa K: Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 2001, 88(11):477-481.
  • [27]Chen B, Hrycaj S, Schinko JB, Podlaha O, Wimmer EA, Popadic′ A, Monteiro A: Pogostick: a new versatile piggyBac vector for inducible gene over-expression and down-regulation in emerging model systems. PLoS One 2011, 6(4):e18659.
  • [28]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 2001, 25:402-408.
  • [29]Zwaan BJ, Azevedo RBR, James AC, Van 'T Land J, Partridge L: Cellular basis of wing size variation in Drosophila melanogaster: a comparison of latitudinal clines on two continents. Heredity 2000, 84(3):338-347.
  • [30]Gregory TR: The evolution of complex organs. Evo Edu Outreach 2008, 1:358-389.
  • [31]Hofmann CM, O'Quin KE, Smith AR, Carleton KL: Plasticity of opsin gene expression in cichlids from Lake Malawi. Mol Ecol 2010, 19(10):2064-2074.
  • [32]Katti C, Kempler K, Porter ML, Legg A, Gonzalez R, Garcia-Rivera E, Dugger D, Battelle BA: Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock. J Exp Biol 2010, 15:2589-2601.
  • [33]Vasiliauskas D, Mazzoni EO, Sprecher SG, Brodetskiy K, Johnston RJ Jr, Lidder P, Vogt N, Celik A, Desplan C: Feedback from rhodopsin controls rhodopsin exclusion in Drosophila photoreceptors. Nature 2011, 479(7371):108-U136.
  • [34]Hope AJ, Partridge JC, Hayes PK: Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.). Proc R Soc Lond B 1998, 265(1399):869-874.
  • [35]Cheng CL, Flamarique IN: Opsin expression: new mechanism for modulating colour vision - single cones start making a different opsin as young salmon move to deeper waters. Nature 2004, 428(6980):279-279.
  • [36]Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD: Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 2006, 209(16):3079-3090.
  • [37]Arikawa K, Wakakuwa M, Qiu XD, Kurasawa M, Stavenga DG: Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J Neurosci 2005, 25(25):5935-5942.
  • [38]van der Have TM, de Jong G: Adult size in ectotherms: temperature effects on growth and differentiation. J Theor Biol 1996, 183(3):329-340.
  • [39]Davidowitz G, Nijhout HF: The physiological basis of reaction norms: the interaction among growth rate, the duration of growth and body size. Integr Comp Biol 2004, 44(6):443-449.
  • [40]Atkinson D, Sibly RM: Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol 1997, 12(6):235-239.
  • [41]Warrant EJ, Kelber A, Gislen A, Greiner B, Ribi W, Wcislo WT: Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol 2004, 14(15):1309-1318.
  • [42]Land MF: Visual acuity in insects. Ann Rev Entomol 1997, 42:147-177.
  • [43]Heinrich B: Thermoregulation and flight activity of a satyrine, Coenonympha inornata (Lepidoptera, Satyridae). Ecology 1986, 67(3):593-597.
  • [44]Wickman PO: The influence of temperature on the territorial and mate locating behavior of the small heath butterfly, Coenonympha pamphilus (L) (Lepidoptera, Saryridae). Behav Ecol Sociobiol 1985, 16(3):233-238.
  • [45]Azevedo RBR, French V, Partridge L: Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 2002, 48(2):231-237.
  • [46]Posnien N, Hopfen C, Hilbrant M, Ramos-Womack M, Murat S, Schoenauer A, Herbert SL, Nunes MDS, Arif S, Breuker CJ, et al.: Evolution of eye morphology and rhodopsin expression in the drosophila melanogaster species subgroup. PLoS One 7(5):e37346.
  • [47]Rutowski RL: Variation of eye size in butterflies: inter- and intraspecific patterns. J Zoology 2000, 252:187-195.
  • [48]Wallace K, Rutowski R: Sexual dimorphism in eye morphology in a butterfly (Asterocampa leilia; Lepidoptera, Nymphalidae). Psyche 2000, 103:25-26.
  • [49]Merry JW, Kemp DJ, Rutowski RL: Variation in compound eye structure: effects of diet and family. Evolution Int J Org Evolution 2011, 65(7):2098-2110.
  • [50]Van Dyck H, Matthysen E: Thermoregulatory differences between phenotypes in the speckled wood butterfly: hot perchers and cold patrollers? Oecologia 1998, 114(3):326-334.
  • [51]Joron M, Brakefield PM: Captivity masks inbreeding effects on male mating success in butterflies. Nature 2003, 424(6945):191-194.
  • [52]Emlen DJ: Costs and the diversification of exaggerated animal structures. Science 2001, 291(5508):1534-1536.
  • [53]Nijhout HF, Emlen DJ: Competition among body parts in the development and evolution of insect morphology. Proc Natl Acad Sci USA 1998, 95(7):3685-3689.
  • [54]Nijhout HF, Wheeler DE: Growth models of complex allometries in holometabolous insects. Am Nat 1996, 148(1):40-56.
  • [55]Simmons LW, Emlen DJ: Evolutionary trade-off between weapons and testes. Proc Natl Acad Sci USA 2006, 103(44):16346-16351.
  • [56]Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Monteiro A, French V, Carroll SB: Development, plasticity and evolution of butterfly eyespot patterns. Nature 1996, 384:236-242.
  • [57]Oostra V, de Jong MA, Invergo BM, Kesbeke F, Wende F, Brakefield PM, Zwaan BJ: Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. P Roy Soc B-Biol Sci 2011, 278(1706):789-797.
  文献评价指标  
  下载次数:130次 浏览次数:97次