期刊论文详细信息
BMC Structural Biology
Crystal structure of an engineered YopM-InlB hybrid protein
Hartmut H Niemann3  Willem M Bleymüller1  Ermanno Gherardi2  Dennis Breitsprecher4 
[1] Department of Chemistry, Bielefeld University, PO Box 10 01 31, 33501 Bielefeld, Germany;Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;Center for Biotechnology (CeBiTec), Bielefeld University, 33501 Bielefeld, Germany;Department of Molecular Structural Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
关键词: Protein stability;    Protein engineering;    Protein chimera;    LRR;    Leucine-rich repeat;    Internalin;    Hybrid protein;    Chimeric protein;    Cap domain;    Capping structure;   
Others  :  793083
DOI  :  10.1186/1472-6807-14-12
 received in 2014-01-09, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

The multi-domain protein InlB (internalin B) from Listeria monocytogenes is an agonist of the human receptor tyrosine kinase MET. Only the internalin domain directly interacts with MET. The internalin domain consists of seven central leucine-rich repeats (LRRs) flanked by an N-terminal helical cap domain and a C-terminal immunoglobulin-like structure. A potential function of the N-terminal cap in receptor binding could so far not be demonstrated by deleting the cap, since the cap is also implicated in nucleating folding of the LRR domain.

Results

We generated an InlB variant (YopM-InlB) in which the InlB cap domain was replaced by the unrelated N-terminal capping structure of the LRR protein YopM from Yersinia enterocolitica. The crystal structure of the engineered protein shows that it folds properly. Because the first LRR is structurally closely linked to the cap domain, we exchanged LRR1 along with the cap domain. This resulted in unexpected structural changes extending to LRR2 and LRR3, which are deeply involved in MET binding. As a consequence, the binding of YopM-InlB to MET was substantially weaker than that of wild type InlB. The engineered protein was about one order of magnitude less active in colony scatter assays than wild type InlB.

Conclusions

We obtained a well-behaved InlB variant with an altered N-terminal capping structure through protein design. The reduced affinity for MET precludes a straightforward interpretation of the results from cell-based assays. Still, the engineered hybrid protein induced cell scatter, suggesting that the cap is required for folding and stability of InlB but is not essential for interactions that assemble the signalling-active receptor complex. The cap swap approach described here is clearly applicable to other L. monocytogenes internalins and other LRR proteins such as YopM and may yield useful structure/function correlates within this protein family.

【 授权许可】

   
2014 Breitsprecher et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705043339228.pdf 1335KB PDF download
Figure 4. 138KB Image download
Figure 3. 105KB Image download
Figure 2. 65KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P: Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 1995, 16:251-261.
  • [2]Lingnau A, Domann E, Hudel M, Bock M, Nichterlein T, Wehland J, Chakraborty T: Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun 1995, 63:3896-3903.
  • [3]Niemann HH: Structural basis of MET receptor dimerization by the bacterial invasion protein InlB and the HGF/SF splice variant NK1. Biochim Biophys Acta 1834, 2013:2195-2204.
  • [4]Shen Y, Naujokas M, Park M, Ireton K: InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 2000, 103:501-510.
  • [5]Bierne H, Cossart P: InlB, a surface protein of Listeria monocytogenes that behaves as an invasin and a growth factor. J Cell Sci 2002, 115:3357-3367.
  • [6]Niemann HH: Structural insights into Met receptor activation. Eur J Cell Biol 2011, 90:972-981.
  • [7]Banerjee M, Copp J, Vuga D, Marino M, Chapman T, van der Geer P, Ghosh P: GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation. Mol Microbiol 2004, 52:257-271.
  • [8]Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P: InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 1997, 25:285-294.
  • [9]Braun L, Nato F, Payrastre B, Mazie JC, Cossart P: The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol Microbiol 1999, 34:10-23.
  • [10]Copp J, Marino M, Banerjee M, Ghosh P, van der Geer P: Multiple regions of internalin B contribute to its ability to turn on the Ras-mitogen-activated protein kinase pathway. J Biol Chem 2003, 278:7783-7789.
  • [11]Ebbes M, Bleymuller WM, Cernescu M, Nolker R, Brutschy B, Niemann HH: Fold and function of the InlB B-repeat. J Biol Chem 2011, 286:15496-15506.
  • [12]Hrtska SC, Kemp MM, Munoz EM, Azizad O, Banerjee M, Raposo C, Kumaran J, Ghosh P, Linhardt RJ: Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry 2007, 46:2697-2706.
  • [13]Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P: Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 1999, 34:902-914.
  • [14]Jonquieres R, Pizarro-Cerda J, Cossart P: Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol 2001, 42:955-965.
  • [15]Niemann HH, Jager V, Butler PJ, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW: Structure of the human receptor tyrosine kinase Met in complex with the Listeria invasion protein InlB. Cell 2007, 130:235-246.
  • [16]Bella J, Hindle KL, McEwan PA, Lovell SC: The leucine-rich repeat structure. Cell Mol Life Sci 2008, 65:2307-2333.
  • [17]Marino M, Braun L, Cossart P, Ghosh P: Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell 1999, 4:1063-1072.
  • [18]Schubert WD, Gobel G, Diepholz M, Darji A, Kloer D, Hain T, Chakraborty T, Wehland J, Domann E, Heinz DW: Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J Mol Biol 2001, 312:783-794.
  • [19]Freiberg A, Machner MP, Pfeil W, Schubert WD, Heinz DW, Seckler R: Folding and stability of the leucine-rich repeat domain of internalin B from Listeria monocytogenes. J Mol Biol 2004, 337:453-461.
  • [20]Courtemanche N, Barrick D: The leucine-rich repeat domain of Internalin B folds along a polarized N-terminal pathway. Structure 2008, 16:705-714.
  • [21]Niemann HH, Gherardi E, Bleymuller WM, Heinz DW: Engineered variants of InlB with an additional leucine-rich repeat discriminate between physiologically relevant and packing contacts in crystal structures of the InlB:MET complex. Protein Sci 2012, 21:1528-1539.
  • [22]Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS: Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J Mol Biol 2001, 312:807-821.
  • [23]Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW: Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002, 111:825-836.
  • [24]Machner MP, Frese S, Schubert WD, Orian-Rousseau V, Gherardi E, Wehland J, Niemann HH, Heinz DW: Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes. Mol Microbiol 2003, 48:1525-1536.
  • [25]Niemann HH, Petoukhov MV, Hartlein M, Moulin M, Gherardi E, Timmins P, Heinz DW, Svergun DI: X-ray and neutron small-angle scattering analysis of the complex formed by the Met receptor and the Listeria monocytogenes invasion protein InlB. J Mol Biol 2008, 377:489-500.
  • [26]Dietz MS, Hasse D, Ferraris DM, Gohler A, Niemann HH, Heilemann M: Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophys 2013, 6:6. BioMed Central Full Text
  • [27]Ferraris DM, Gherardi E, Di Y, Heinz DW, Niemann HH: Ligand-mediated dimerization of the Met receptor tyrosine kinase by the bacterial invasion protein InlB. J Mol Biol 2010, 395:522-532.
  • [28]Stumpp MT, Forrer P, Binz HK, Pluckthun A: Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 2003, 332:471-487.
  • [29]Jin MS, Lee JO: Application of hybrid LRR technique to protein crystallization. BMB Rep 2008, 41:353-357.
  • [30]Lee SC, Park K, Han J, Lee JJ, Kim HJ, Hong S, Heu W, Kim YJ, Ha JS, Lee SG, Cheong HK, Jeon YH, Kim D, Kim HS: Design of a binding scaffold based on variable lymphocyte receptors of jawless vertebrates by module engineering. Proc Natl Acad Sci U S A 2012, 109:3299-3304.
  • [31]Marino M, Banerjee M, Copp J, Dramsi S, Chapman T, van der Geer P, Cossart P, Ghosh P: Characterization of the calcium-binding sites of Listeria monocytogenes InlB. Biochem Biophys Res Commun 2004, 316:379-386.
  • [32]Braun L, Ghebrehiwet B, Cossart P: gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 2000, 19:1458-1466.
  • [33]Marino M, Banerjee M, Jonquieres R, Cossart P, Ghosh P: GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J 2002, 21:5623-5634.
  • [34]Courtemanche N, Barrick D: Folding thermodynamics and kinetics of the leucine-rich repeat domain of the virulence factor Internalin B. Protein Sci 2008, 17:43-53.
  • [35]Kloss E, Barrick D: Thermodynamics, kinetics, and salt dependence of folding of YopM, a large leucine-rich repeat protein. J Mol Biol 2008, 383:1195-1209.
  • [36]Kloss E, Barrick D: C-terminal deletion of leucine-rich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Sci 2009, 18:1948-1960.
  • [37]Vieux EF, Barrick D: Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM. Biophys Chem 2011, 159:152-161.
  • [38]Kabsch W: XDS. Acta Crystallogr D Biol Crystallogr 2010, 66:125-132.
  • [39]McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ: Phaser crystallographic software. J Appl Crystallogr 2007, 40:658-674.
  • [40]Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010, 66:486-501.
  • [41]Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA: REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011, 67:355-367.
  • [42]Painter J, Merritt EA: TLSMD web server for the generation of multi-group TLS models. J Appl Crystallogr 2006, 39:109-111.
  • [43]Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010, 66:12-21.
  • [44]Kabsch W: Solution for best rotation to relate 2 sets of vectors. Acta Crystallogr A 1976, 32:922-923.
  • [45]DeLano WL: The PyMOL molecular graphics system. 2002. on World Wide Web http://www.pymol.org webcite
  • [46]Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH: A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 2013, 21:1931-1941.
  • [47]Niesen FH, Berglund H, Vedadi M: The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2007, 2:2212-2221.
  • [48]Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, Bandyopadhyay A, Hartmann G, Butler PJ: Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 2003, 100:12039-12044.
  文献评价指标  
  下载次数:17次 浏览次数:6次