| BMC Immunology | |
| Serum reactome induced by Bordetella pertussis infection and Pertussis vaccines: qualitative differences in serum antibody recognition patterns revealed by peptide microarray analysis | |
| Markus J Maeurer1  Hans O Hallander2  Reza Advani2  Giovanni Ferrara3  Davide Valentini1  | |
| [1] Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden;The Swedish National Institute of Public Health, Solna, Sweden;Department of Medicine, University of Perugia, Perugia, Italy | |
| 关键词: Peptide microarrays; Immune response; Vaccine; Whooping cough; | |
| Others : 1220015 DOI : 10.1186/s12865-015-0090-3 |
|
| received in 2014-06-12, accepted in 2015-03-31, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Pertussis (whooping cough) remains a public health problem despite extensive vaccination strategies. Better understanding of the host-pathogen interaction and the detailed B. pertussis (Bp) target recognition pattern will help in guided vaccine design. We characterized the specific epitope antigen recognition profiles of serum antibodies (‘the reactome’) induced by whooping cough and B. pertussis (Bp) vaccines from a case–control study conducted in 1996 in infants enrolled in a Bp vaccine trial in Sweden (Gustafsson, NEJM, 1996, 334, 349–355).
Methods
Sera from children with whooping cough, vaccinated with Diphtheria Tetanus Pertussis (DTP) whole-cell (wc), acellular 5 (DPTa5), or with the 2 component (a2) vaccines and from infants receiving only DT (n = 10 for each group) were tested with high-content peptide microarrays containing 17 Bp proteins displayed as linear (n = 3175) peptide stretches. Slides were incubated with serum and peptide-IgG complexes detected with Cy5-labeled goat anti-human IgG and analyzed using a GenePix 4000B microarray scanner, followed by statistical analysis, using PAM (Prediction Analysis for Microarrays) and the identification of uniquely recognized peptide epitopes.
Results
367/3,085 (11.9%) peptides were recognized in 10/10 sera from children with whooping cough, 239 (7.7%) in DTPwc, 259 (8.4%) in DTPa5, 105 (3.4%) DTPa2, 179 (5.8%) in the DT groups. Recognition of strongly recognized peptides was similar between whooping cough and DPTwc, but statistically different between whooping cough vs. DTPa5 (p < 0.05), DTPa2 and DT (p < 0.001 vs. both) vaccines. 6/3,085 and 2/3,085 peptides were exclusively recognized in (10/10) sera from children with whooping cough and DTPa2 vaccination, respectively. DTPwc resembles more closely the whooping cough reactome as compared to acellular vaccines.
Conclusion
We could identify a unique recognition signature common for each vaccination group (10/10 children). Peptide microarray technology allows detection of subtle differences in epitope signature responses and may help to guide rational vaccine development by the objective description of a clinically relevant immune response that confers protection against infectious pathogens.
【 授权许可】
2015 Valentini et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150721022617233.pdf | 1580KB | ||
| Figure 6. | 88KB | Image | |
| Figure 5. | 90KB | Image | |
| Figure 4. | 41KB | Image | |
| Figure. 3. | 64KB | Image | |
| Figure 2. | 84KB | Image | |
| Figure 1. | 26KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure. 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Ulloa-Gutierrez R, Hozbor D, Avila-Aguero ML, Caro J, von Konig CH W, Tan T et al.. The global pertussis initiative: Meeting report from the Regional Latin America Meeting, Costa Rica, 5–6 December, 2008. Hum Vaccin. 2010; 6(11):876-80.
- [2]Broutin H, Viboud C, Grenfell BT, Miller MA, Rohani P. Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries. Proc Biol Sci/RoySoc. 2010; 277(1698):3239-45.
- [3]Broutin H, Guégan J-F, Elguero E, Simondon F, Cazelles B. Large-scale comparative analysis of pertussis population dynamics: periodicity, synchrony, and impact of vaccination. Am J Epidemiol. 2005; 161(12):1159-67.
- [4]Barret AS, Ryan A, Breslin A, Cullen L, Murray A, Grogan J et al. Pertussis outbreak in northwest Ireland, January - June 2010. Euro Surveillance: Bulletin Européen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin. 2010;15(35). http://www. eurosurveillance.org/images/dynamic/EE/V15N35/art19654.pdf webcite
- [5]Hochwald O, Bamberger ES, Rubin L, Gershtein R, Srugo I. A pertussis outbreak among daycare children in Northern Israel: who gets sick? Isr Med Assoc J:IMAJ. 2010; 12(5):283-6.
- [6]Roehr B. Whooping cough outbreak hits several US states. Br Med J. 2010; 341:c4627.
- [7]CDPH. Pertussis Report. 2015. http://www. cdph.ca.gov/programs/immunize/Documents/Pertussis_Report_1-7-2015.pdf webcite
- [8]Lavine J. Broutin H. Harvill ET, Bjørnstad ON. Imperfect vaccine-induced immunity and whooping cough transmission to infants. Vaccine; 2010.
- [9]van Gent M, de Greeff SC, van der Heide HGJ, Mooi FR. An investigation into the cause of the 1983 whooping cough epidemic in the Netherlands. Vaccine. 2009; 27(13):1898-903.
- [10]Koepke R, Eickhoff JC, Ayele RA, Petit AB, Schauer SL, Hopfensperger DJ et al.. Estimating the effectiveness of tetanus-diphtheria-acellular pertussis vaccine (tdap) for preventing pertussis: evidence of rapidly waning immunity and difference in effectiveness by tdap brand. J Infect Dis. 2014; 210(6):942-53.
- [11]Berbers GA, de Greeff SC, Mooi FR. Improving pertussis vaccination. Hum Vaccin. 2009; 5(7):497-503.
- [12]Gustafsson L, Hallander HO, Olin P, Reizenstein E, Storsaeter J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med. 1996; 334(6):349-55.
- [13]Mooi FR. Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. Infect Genet Evol: JMolEpidemiolEvolGenInfectDis. 2010; 10(1):36-49.
- [14]Aditya A, Valentini D, Montomoli E, Lapini G, Biuso F, Wenschuh H et al.. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus pandemrix -vaccination. Immunology. 2015.
- [15]Gaseitsiwe S, Valentini D, Mahdavifar S, Magalhaes I, Hoft DF, Zerweck J et al.. Pattern recognition in pulmonary tuberculosis defined by high content peptide microarray chip analysis representing 61 proteins from M. tuberculosis. PLoS One. 2008; 3(12):e3840-e.
- [16]Perez-Bercoff L, Valentini D, Gaseitsiwe S, Mahdavifar S, Schutkowski M, Poiret T et al.. Whole CMV proteome pattern recognition analysis after HSCT identifies unique epitope targets associated with the CMV status. PLoS One. 2014; 9(4): Article ID e89648
- [17]Reilly M, Valentini D. Visualisation and pre-processing of peptide microarray data. Methods Mol Biol. 2009; 570:373-89.
- [18]Nahtman T, Jernberg A, Mahdavifar S, Zerweck J, Schutkowski M, Maeurer M et al.. Validation of peptide epitope microarray experiments and extraction of quality data. J Immunol Methods. 2007; 328(1–2):1-13.
- [19]Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002; 99(10):6567-72.
- [20]Valentini D, Gaseitsiwe S, Maeurer M. Humoral 'reactome' profiles using peptide microarray chips. Trends Immunol. 2010; 31(11):399-400.
- [21]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al.. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004; 5(10):R80. BioMed Central Full Text
- [22]A Language and Environment for Statistical Computing. 2014.
- [23]Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N et al.. The immune epitope database 2.0. Nucleic Acids Res. 2010; 38(Database issue):D854-62-D-62.
- [24]Cherry JD. Epidemic pertussis in 2012–the resurgence of a vaccine-preventable disease. N Engl J Med. 2012; 367(9):785-7.
- [25]Cherry JD. Why do pertussis vaccines fail? Pediatrics. 2012; 129(5):968-70.
- [26]Preston NW. Effectiveness of Pertussis Vaccines. Br Med J. 1965; 2(5452):11-3.
- [27]Schmidtke AJ, Boney KO, Martin SW, Skoff TH, Tondella ML, Tatti KM. Population diversity among Bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis. 2012; 18(8):1248-55.
- [28]Queenan AM, Cassiday PK, Evangelista A. Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med. 2013; 368(6):583-4.
- [29]Cohen IR. The cognitive paradigm and the immunological homunculus. Immunol Today. 1992; 13(12):490-4.
- [30]Cohen IR. Biomarkers, self-antigens and the immunological homunculus. J Autoimmun. 2007; 29(4):246-9.
- [31]Heininger U, Klich K, Stehr K, Cherry JD. Clinical findings in Bordetella pertussis infections: results of a prospective multicenter surveillance study. Pediatrics. 1997; 100(6): Article ID E10
- [32]Zackrisson G, Taranger J, Trollfors B. History of whooping cough in nonvaccinated Swedish children, related to serum antibodies to pertussis toxin and filamentous hemagglutinin. J Pediatr. 1990; 116(2):190-4.
- [33]Weyant RS, Hollis DG, Weaver RE, Amin MF, Steigerwalt AG, O'Connor SP et al.. Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol. 1995; 33(1):1-7.
- [34]Yih WK, Silva EA, Ida J, Harrington N, Lett SM, George H. Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerg Infect Dis. 1999; 5(3):441-3.
- [35]Corbiere V, Chapiro J, Stroobant V, Ma W, Lurquin C, Lethe B et al.. Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. CancerRes. 2011; 71(4):1253-62.
- [36]Khurana S, Chearwae W, Castellino F, Manischewitz J, King LR, Honorkiewicz A et al.. Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci Transl Med. 2010; 2(15):15ra5.
- [37]Radosevic K, Rodriguez A, Mintardjo R, Tax D, Bengtsson KL, Thompson C et al.. Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: impact of distinct additional adjuvants. Vaccine. 2008; 26(29–30):3640-6.
- [38]Lucchese G. Confronting JC, virus and Homo sapiens biological signatures. Front Biosci. 2013; 18:716-24.
- [39]Cherry JD, Gornbein J, Heininger U, Stehr K. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine. 1998; 16(20):1901-6.
- [40]Storsaeter J, Hallander HO, Gustafsson L, Olin P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine. 1998; 16(20):1907-16.
- [41]Weiss AA, Patton AK, Millen SH, Chang SJ, Ward JI, Bernstein DI. Acellular pertussis vaccines and complement killing of Bordetella pertussis. Infect Immun. 2004; 72(12):7346-51.
- [42]Cherry JD, Heininger U, Richards DM, Storsaeter J, Gustafsson L, Ljungman M et al.. Antibody response patterns to Bordetella pertussis antigens in vaccinated (primed) and unvaccinated (unprimed) young children with pertussis. Clin Vaccine Immunol. 2010; 17(5):741-7.
- [43]Liko J, Robison SG, Cieslak PR. Priming with whole-cell versus acellular pertussis vaccine. N Engl J Med. 2013; 368(6):581-2.
- [44]Sheridan SL, Ware RS, Grimwood K, Lambert SB. Number and order of whole cell pertussis vaccines in infancy and disease protection. JAMA. 2012; 308(5):454-6.
PDF