期刊论文详细信息
BMC Research Notes
Role of Serine140 in the mode of action of Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA)
Diógenes S Santos1  Luiz A Basso1  Walter Filgueira de Azevedo1  Rafael Andrade Caceres2  Leonardo A Rosado1 
[1]Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Av. Ipiranga 6681 – Tecnopuc – Prédio 92A, ZIP CODE 90619-900, Porto Alegre, RS, Brazil
[2]Faculdade de Biociências, Laboratório de Bioquímica Estrutural, PUCRS, Av. Ipiranga 6681, Porto Alegre, RS, 90619-900, Brazil
关键词: Molecular modeling;    Fluorescence spectroscopy;    Enzyme activity;    Site-directed mutagenesis;    MabA;    β-Ketoacyl-ACP Reductase;    Mycobacterium tuberculosis;   
Others  :  1165604
DOI  :  10.1186/1756-0500-5-526
 received in 2012-05-07, accepted in 2012-09-14,  发布年份 2012
PDF
【 摘 要 】

Background

Tuberculosis (TB) still remains one of the most deadly infectious diseases in the world. Mycobacterium tuberculosis β-ketoacyl-ACP Reductase (MabA) is a member of the fatty acid elongation system type II, providing precursors of mycolic acids that are essential to the bacterial cell growth and survival. MabA has been shown to be essential for M. tuberculosis survival and to play a role in intracellular signal transduction of bacilli.

Findings

Here we describe site-directed mutagenesis, recombinant protein expression and purification, steady-state kinetics, fluorescence spectroscopy, and molecular modeling for S140T and S140A mutant MabA enzymes. No enzyme activity could be detected for S140T and S140A. Although the S140T protein showed impaired NADPH binding, the S140A mutant could bind to NADPH. Computational predictions for NADPH binding affinity to WT, S140T and S140A MabA proteins were consistent with fluorescence spectroscopy data.

Conclusions

The results suggest that the main role of the S140 side chain of MabA is in catalysis. The S140 side chain appears to also play an indirect role in NADPH binding. Interestingly, NADPH titrations curves shifted from sigmoidal for WT to hyperbolic for S140A, suggesting that the S140 residue may play a role in displacing the pre-existing equilibrium between two forms of MabA in solution. The results here reported provide a better understanding of the mode of action of MabA that should be useful to guide the rational (function-based) design of inhibitors of MabA enzyme activity which, hopefully, could be used as lead compounds with anti-TB action.

【 授权许可】

   
2012 Rosado et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416032233368.pdf 2375KB PDF download
Figure 5. 83KB Image download
Figure 4. 123KB Image download
Figure 3. 122KB Image download
Figure 2. 127KB Image download
Figure 1. 19KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Harries AD, Dye C: Tuberculosis. Ann Trop Med Parasitol 2006, 100:415-431.
  • [2]World Health Organization: Global Tuberculosis Control -Epidemiology, Strategy, Financing. www.who.int/tb/publications/global_report/2009 webcite.
  • [3]Centers for Disease Control and Prevention (CDC): Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2004-2006. MMWR Morb Mortal Wkly Rep 2006, 55:301-305.
  • [4]Dorman SE, Chaisson RE: From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med 2007, 13:295-298.
  • [5]Singh JA, Upshur R, Padayatchi N: XDR-TB in South Africa: no time for denial or complacency. PLoS Med 2007, 4:e50.
  • [6]Velayati AA, Farnia P, Masjedi MR, Ibrahim TA, Tabarsi P, Haroun RZ, Kuan HO, Ghanavi J, Farnia P, Varahram M: Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level. Eur Respir J 2009, 34:1202-1203.
  • [7]Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Ghanavi J, ZiaZarifi AH, Hoffner SE: Emergence of new forms of totally drug-resistant tuberculosis bacilli. Chest 2009, 136:420-425.
  • [8]Banerjee A, Sugantino M, Sacchettini JC, Jacobs WR Jr: The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 1998, 144:2697-2707.
  • [9]Parish T, Roberts G, Laval F, Schaeffer M, Daffe M, Dunkan K: Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG. J Bacteriol 2007, 189:3721-3728.
  • [10]Veyron-Churlet R, Zanella-Cleon I, Cohen-Gonsaud M, Molle V, Kremer L: Phosphorylation of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J Biol Chem 2010, 285:12714-12725.
  • [11]Cantaloube S, Veyron-Churlet R, Haddache N, Daffé M, Zerbib D: The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One 2011, 6(12):e29564.
  • [12]Robertson JG: Enzymes as a special class of therapeutic target: clinical drugs and modes of action. Curr Opin Struct Biol 2007, 17:674-679.
  • [13]Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnval H: Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 2003, 143–144:247-253.
  • [14]Marrakchi H, Ducasse S, Labesse G, Montrozier H, Margeat E, Emorine L, Charpentier X, Mamadou D, Quémard A: MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 2002, 148:951-960.
  • [15]Cohen-Gonsaud M, Ducasse S, Hoh F, Zerbib D, Labesse G, Quémard A: Crystal structure of MabA from Mycobacterium tuberculosis, a reductase involved in long-chain fatty acid biosynthesis. J Mol Biol 2002, 320:249-261.
  • [16]Kanavagh KL, Jörnvall H, Persson B, Oppermann U: The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008, 65:3895-3906.
  • [17]Silva RG, Carvalho LP, Blanchard JS, Santos DS, Basso LA: Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) reductase: kinetic and chemical mechanisms. Biochemistry 2006, 45:13064-13073.
  • [18]Winberg J-O, Brendskag MK, Sylte I, Lindstad RI, McKinley-McKee JS: The catalytic triad in Drosophila alcohol dehydrogenase: pH, temperature and molecular modelling studies. J Mol Biol 1999, 294:601-616.
  • [19]Persson B, Krook M, Jörnvall H: Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem 1991, 200:537-543.
  • [20]Silva RG, Rosado LA, Santos DS, Basso LA: Mycobacterium tuberculosis beta-ketoacyl-ACP reductase: alpha-secondary kinetic isotope effects and kinetic and equilibrium mechanisms of substrate binding. Arch Biochem Biophys 2008, 471:1-10.
  • [21]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [22]Bradford MM, McRorie RA, Williams WL: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [23]Kroemer RT, Doughty SW, Robinson AJ, Richards WG: Prediction of the three-dimensional structure of human interleukin-7 by homology modeling. Protein Eng 1996, 9:493-498.
  • [24]Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993, 234:779-815.
  • [25]van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ: GROMACS: fast, flexible, and free. J Comp Chem 2005, 26:1701-1718.
  • [26]Ooestenbrik C, Soares TA, van der Vegt NF, van Gunsteren WF: Validation of the 53A6 GROMOS force field. Eur Biophys J 2005, 34:273-284.
  • [27]Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J: Interaction models for water in relation to protein hydration. In Intermolecular Forces. Edited by Pullman B. Dordrecht: Reidel D. Publishing Company; 1981:331-342.
  • [28]Laskowski RA, Macarthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 1993, 26:283-291.
  • [29]Azevedo WF Jr, Mueller-Dieckmann JH, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH: Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996, 93:2735-2740.
  • [30]Azevedo WF Jr, Canduri F, Fadel V, Teodoro LG, Hial V, Gomes RA: Molecular model for the binary complex of uropepsin and pepstatin. Biochem Biophys Res Commun 2001, 287:277-281.
  • [31]Wallace AC, Laskowski RA, Thornton JM: LIGPLOT: a program generate schematic diagrams of protein–ligand interactions. Protein Eng 1995, 8:127-134.
  • [32]Wang R, Lai L, Wang S: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput-Aided Molecular Des 2002, 16:11-26.
  • [33]Fan H, Schneidman-Duhovny D, Irwin J, Dong GQ, Shoichet B, Sali A: Statistical Potential for Modeling and Ranking of Protein-Ligand Interactions. J Chem Inf Model 2011, 51:3078-3092.
  • [34]Velec HF, Gohlke H, Klebe G: DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 2005, 48:6296-6303.
  • [35]Monod J, Wyman J, Changeux J-P: On the nature of allosteric transitions: a plausible model. J Mol Biol 1965, 12:88-118.
  • [36]Hill AV: The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem J 1913, 7:471-480.
  • [37]Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U: Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 2002, 277:25677-25684.
  • [38]Oppermann UCT, Filling C, Berndt KD, Persson B, Benach J, Ladenstein R, Jörnvall H: Active site directed mutagenesis of 3β/17β-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions. Biochemistry 1997, 36:34-40.
  • [39]Cohen-Gonsaud M, Ducasse-Cabanot S, Quémard A, Labesse G: Ligand-induced fit in mycobacterial MabA: the sequence-specific C-terminus locks the conformational change. Proteins 2005, 60:392-400.
  • [40]Price AC, Zhang YM, Rock CO, White SW: Structure of beta-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: negative cooperativity and its structural basis. Biochemistry 2001, 40:12772-12781.
  • [41]Karmodiya K, Surolia N: Analyses of co-operative transitions in Plasmodium falciparum beta-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding. FEBS J 2006, 273:4093-4103.
  • [42]Sheldon PS, Kekwick RG, Smith CG, Sidebottom C, Slabas AR: 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus). Biochim Biophys Acta 1992, 1120:151-159.
  • [43]Dutta D, Bhattacharyya S, Das AK: Crystal structure and fluorescence studies reveal the role of helical dimeric interface of Stapylococcal FabG1 in positive cooperativity for NADPH. Proteins 2012, 8:1250-1257.
  • [44]Goodey NM, Benkovic SJ: Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 2008, 4:474-482.
  文献评价指标  
  下载次数:58次 浏览次数:46次