期刊论文详细信息
BMC Genomics
Maize and millet transcription factors annotated using comparative genomic and transcriptomic data
Wen-Hsiung Li3  Sean Chun-Chang Chen1  Yao-Ming Chang1  Chun-Ping Yu2  Jinn-Jy Lin1 
[1] Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan;Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
关键词: Functional annotation;    Comparative genomics;    Coregulators;    Transcription factor annotation;   
Others  :  1139513
DOI  :  10.1186/1471-2164-15-818
 received in 2014-04-19, accepted in 2014-09-23,  发布年份 2014
PDF
【 摘 要 】

Background

Transcription factors (TFs) contain DNA-binding domains (DBDs) and regulate gene expression by binding to specific DNA sequences. In addition, there are proteins, called transcription coregulators (TCs), which lack DBDs but can alter gene expression through interaction with TFs or RNA Polymerase II. Therefore, it is interesting to identify and classify the TFs and TCs in a genome. In this study, maize (Zea mays) and foxtail millet (Setaria italica), two important species for the study of C4 photosynthesis and kranz anatomy, were selected.

Result

We conducted a comprehensive genome-wide annotation of TFs and TCs in maize B73 and in two strains of foxtail millet, Zhang gu and Yugu1, and classified them into families. To gain additional support for our predictions, we searched for their homologous genes in Arabidopsis or rice and studied their gene expression level using RNA-seq and microarray data. We identified many new TF and TC families in these two species, and described some evolutionary and functional aspects of the 9 new maize TF families. Moreover, we detected many pseudogenes and transposable elements in current databases. In addition, we examined tissue expression preferences of TF and TC families and identified tissue/condition-specific TFs and TCs in maize and millet. Finally, we identified potential C4-related TF and TC genes in maize and millet.

Conclusions

Our results significantly expand current TF and TC annotations in maize and millet. We provided supporting evidence for our annotation from genomic and gene expression data and identified TF and TC genes with tissue preference in expression. Our study may facilitate the study of regulation of gene expression, tissue morphogenesis, and C4 photosynthesis in maize and millet. The data we generated in this study are available at http://sites.google.com/site/jjlmmtf webcite.

【 授权许可】

   
2014 Lin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321163146180.pdf 1412KB PDF download
Figure 5. 43KB Image download
Figure 4. 53KB Image download
Figure 3. 55KB Image download
Figure 2. 65KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ohme-Takagi M, Shinshi H: Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 1995, 7:173-182.
  • [2]Nole-Wilson S, Krizek BA: DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA. Nucleic Acids Res 2000, 28:4076-4082.
  • [3]Ulmasov T, Hagen G, Guilfoyle TJ: ARF1, a transcription factor that binds to auxin response elements. Science 1997, 276:1865-1868.
  • [4]Guilfoyle TJ, Ulmasov T, Hagen G: The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 1998, 54:619-627.
  • [5]Mannervik M, Nibu Y, Zhang H, Levine M: Transcriptional coregulators in development. Science 1999, 284:606-609.
  • [6]Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ: AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 2001, 13:2809-2822.
  • [7]Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G: The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 2002, 16:1610-1615.
  • [8]Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J: DATF: a database of Arabidopsis transcription factors. Bioinformatics 2005, 21:2568-2569.
  • [9]Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K: RARTF: database and tools for complete sets of Arabidopsis transcription factors. DNA Res 2005, 12:247-256.
  • [10]Mitsuda N, Ohme-Takagi M: Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 2009, 50:1232-1248.
  • [11]Perez-Rodriguez P, Riano-Pachon DM, Correa LG, Rensing SA, Kersten B, Mueller-Roeber B: PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 2010, 38:D822-D827.
  • [12]Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E: AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 2011, 39:D1118-D1122.
  • [13]Yilmaz A, Nishiyama MY Jr, Fuentes BG, Souza GM, Janies D, Gray J, Grotewold E: GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol 2009, 149:171-180.
  • [14]Ling Y, Du Z, Zhang Z, Su Z: ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome. BMC Genomics 2010, 11:580. BioMed Central Full Text
  • [15]Dai X, Sinharoy S, Udvardi M, Zhao PX: PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics 2013, 14:321. BioMed Central Full Text
  • [16]Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS: TreeTFDB: an integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics. DNA Res 2013, 20:151-162.
  • [17]Jin J, Zhang H, Kong L, Gao G, Luo J: PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014, 42:D1182-D1187.
  • [18]Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES: A first-generation haplotype map of maize. Science 2009, 326:1115-1117.
  • [19]Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 2009, 326:1112-1115.
  • [20]Liu WY, Chang YM, Chen SC, Lu CH, Wu YH, Lu MY, Chen DR, Shih AC, Sheue CR, Huang HC, Yu CP, Lin HH, Shiu SH, Ku MS, Li WH: Anatomical and transcriptional dynamics of maize embryonic leaves during seed germination. Proc Natl Acad Sci U S A 2013, 110:3979-3984.
  • [21]Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, et al.: Reference genome sequence of the model plant Setaria. Nat Biotechnol 2012, 30:555-561.
  • [22]Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, et al.: Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 2012, 30:549-554.
  • [23]Zhang HM, Chen H, Liu W, Liu H, Gong J, Wang H, Guo AY: AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Res 2012, 40:D144-D149.
  • [24]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [25]Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA: Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 2012, 109:3167-3172.
  • [26]Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R: DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 2014, 111:2367-2372.
  • [27]Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DS, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei X, Ware D, Bolser DM, Howe KL, et al.: Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 2014, 42:D546-D552.
  • [28]Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW: Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 2009, 21:1053-1069.
  • [29]Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP: The developmental dynamics of the maize leaf transcriptome. Nat Genet 2010, 42:1060-1067.
  • [30]Davidson RM, Hansey CN, Gowda M, Childs KL, Lin HN, Vaillancourt B, Sekhon RS, de Leon N, Kaeppler SM, Jiang N, Buell CR: Utility of RNA sequencing for analysis of maize reproductive transcriptomes. Plant Genome-Us 2011, 4:191-203.
  • [31]Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, Kaeppler SM: Genome-wide atlas of transcription during maize development. Plant J 2011, 66:553-563.
  • [32]Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM: Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 2011, 23:4221-4233.
  • [33]Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O’Connor D, Grotewold E, Hake S: Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 2012, 26:1685-1690.
  • [34]Chang YM, Liu WY, Shih AC, Shen MN, Lu CH, Lu MY, Yang HW, Wang TY, Chen SC, Chen SM, Li WH, Ku MS: Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis. Plant Physiol 2012, 160:165-177.
  • [35]Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans M: Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014, 15:414. BioMed Central Full Text
  • [36]Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN: A gene expression map of the Arabidopsis root. Science 2003, 302:1956-1960.
  • [37]Smaczniak C, Immink RG, Angenent GC, Kaufmann K: Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139:3081-3098.
  • [38]Nambara E, Hayama R, Tsuchiya Y, Nishimura M, Kawaide H, Kamiya Y, Naito S: The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev Biol 2000, 220:412-423.
  • [39]Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ: LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci U S A 2001, 98:11806-11811.
  • [40]Suzuki M, Wang HHY, McCarty DR: Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 2007, 143:902-911.
  • [41]Tsukagoshi H, Morikami A, Nakamura K: Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci U S A 2007, 104:2543-2547.
  • [42]Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris AS: Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 2011, 11:46-46. BioMed Central Full Text
  • [43]Juarez MT, Twigg RW, Timmermans MC: Specification of adaxial cell fate during maize leaf development. Development 2004, 131:4533-4544.
  • [44]Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL: Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 1999, 126:4117-4128.
  • [45]Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS: KANADI regulates organ polarity in Arabidopsis. Nature 2001, 411:706-709.
  • [46]Kleine T: Arabidopsis thaliana mTERF proteins: evolution and functional classification. Front Plant Sci 2012, 3:233.
  • [47]Dolfini D, Gatta R, Mantovani R: NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2012, 47:29-49.
  • [48]Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang HY, Zhao H, Deng XW, Nelson T: A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 2009, 41:258-263.
  • [49]Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR: Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 2011, 7:e1002383.
  • [50]Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G: Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 2010, 10:145. BioMed Central Full Text
  • [51]Yamaguchi M, Kubo M, Fukuda H, Demura T: Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 2008, 55:652-664.
  • [52]He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY: AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 2005, 44:903-916.
  • [53]Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T: Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 2005, 19:1855-1860.
  • [54]Guo HS, Xie Q, Fei JF, Chua NH: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 2005, 17:1376-1386.
  • [55]Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA: GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 2009, 21:1109-1128.
  • [56]Hall LN, Rossini L, Cribb L, Langdale JA: GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 1998, 10:925-936.
  • [57]Wuest SE, O’Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F: Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 2012, 109:13452-13457.
  • [58]Colangelo EP, Guerinot ML: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 2004, 16:3400-3412.
  • [59]John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM: Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses. Plant Physiol 2014, 165:62-75.
  • [60]Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T: Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J Exp Bot 2014, 65:3543-3555.
  • [61]Wang P, Kelly S, Fouracre JP, Langdale JA: Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 2013, 75:656-670.
  • [62]Zhao Y, Cai M, Zhang X, Li Y, Zhang J, Zhao H, Kong F, Zheng Y, Qiu F: Genome-wide identification, evolution and expression analysis of mTERF gene family in maize. PLoS One 2014, 9:e94126.
  • [63]Mizuno T, Nakamichi N: Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs). Plant Cell Physiol 2005, 46:677-685.
  • [64]Satbhai SB, Yamashino T, Okada R, Nomoto Y, Mizuno T, Tezuka Y, Itoh T, Tomita M, Otsuki S, Aoki S: Pseudo-response regulator (PRR) homologues of the moss Physcomitrella patens: insights into the evolution of the PRR family in land plants. DNA Res 2011, 18:39-52.
  • [65]Takata N, Saito S, Saito CT, Uemura M: Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 2010, 10:126. BioMed Central Full Text
  • [66]Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubes J, Beeckman T, Jansch L, Frentzen M, Van Montagu MC, Kushnir S: Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Natl Acad Sci U S A 2011, 108:6674-6679.
  • [67]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393:386-389.
  • [68]Wade PA: Methyl CpG-binding proteins and transcriptional repression. Bioessays 2001, 23:1131-1137.
  • [69]Springer NM, Kaeppler SM: Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins. Plant Physiol 2005, 138:92-104.
  • [70]He S, Tan G, Liu Q, Huang K, Ren J, Zhang X, Yu X, Huang P, An C: The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis. PLoS One 2011, 6:e18750.
  • [71]Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL, Lipe HP, Scherer SS, Bird TD, Chance PF: Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 2003, 60:22-26.
  • [72]Moriwaki Y, Begum NA, Kobayashi M, Matsumoto M, Toyoshima K, Seya T: Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1. J Biol Chem 2001, 276:23065-23076.
  • [73]Schreiber F, Patricio M, Muffato M, Pignatelli M, Bateman A: TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res 2014, 42:D922-D925.
  • [74]Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A, Lindroth AM, Barres R, Yan J, Stromberg S, De S, Ponten F, Lander ES, Carr SA, Zierath JR, Kullander K, Wadelius C, Lindblad-Toh K, Andersson G, Hjalm G, Andersson L: ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 2009, 7:e1000256.
  • [75]Hayward A, Ghazal A, Andersson G, Andersson L, Jern P: ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions. PLoS One 2013, 8:e59940.
  • [76]Jones PG, VanBogelen RA, Neidhardt FC: Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 1987, 169:2092-2095.
  • [77]Karlson D, Imai R: Conservation of the cold shock domain protein family in plants. Plant Physiol 2003, 131:12-15.
  • [78]Stros M, Launholt D, Grasser KD: The HMG-box: a versatile protein domain occurring in a wide variety of DNA-binding proteins. Cell Mol Life Sci 2007, 64:2590-2606.
  • [79]Reeves R: Structure and function of the HMGI(Y) family of architectural transcription factors. Environ Health Perspect 2000, 108(Suppl 5):803-809.
  • [80]Webster CI, Packman LC, Pwee KH, Gray JC: High mobility group proteins HMG-1 and HMG-I/Y bind to a positive regulatory region of the pea plastocyanin gene promoter. Plant J 1997, 11:703-715.
  • [81]Zhao J, Favero DS, Peng H, Neff MM: Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci U S A 2013, 110:E4688-E4697.
  • [82]Wu L, Wu H, Ma L, Sangiorgi F, Wu N, Bell JR, Lyons GE, Maxson R: Miz1, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev 1997, 65:3-17.
  • [83]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40:D306-D312.
  • [84]Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M: Pfam: the protein families database. Nucleic Acids Res 2014, 42:D222-D230.
  • [85]Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J: PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 2011, 39:D1114-D1117.
  • [86]Bullard JH, Purdom E, Hansen KD, Dudoit S: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94. BioMed Central Full Text
  • [87]Dash S, Van Hemert J, Hong L, Wise RP, Dickerson JA: PLEXdb: gene expression resources for plants and plant pathogens. Nucleic Acids Res 2012, 40:D1194-D1201.
  • [88]Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R: Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013, 14:498. BioMed Central Full Text
  • [89]Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, Almeida-King J, Staines D, Derwent P, Kerhornou A, Kersey P, Flicek P: Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, 2011:bar030.
  • [90]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [91]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  文献评价指标  
  下载次数:14次 浏览次数:0次