BMC Cancer | |
Breast tumor specific mutation in GATA3 affects physiological mechanisms regulating transcription factor turnover | |
Aleksandra B Adomas1  Sara A Grimm2  Christine Malone1  Motoki Takaku1  Jennifer K Sims1  Paul A Wade1  | |
[1] Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, 27709 Research Triangle Park, NC, USA | |
[2] Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA | |
关键词: Transcription factor; Mutation; GATA3; ChIP-seq; Breast cancer; | |
Others : 858879 DOI : 10.1186/1471-2407-14-278 |
|
received in 2013-11-07, accepted in 2014-04-03, 发布年份 2014 | |
【 摘 要 】
Background
The transcription factor GATA3 is a favorable prognostic indicator in estrogen receptor-α (ERα)-positive breast tumors in which it participates with ERα and FOXA1 in a complex transcriptional regulatory program driving tumor growth. GATA3 mutations are frequent in breast cancer and have been classified as driver mutations. To elucidate the contribution(s) of GATA3 alterations to cancer, we studied two breast cancer cell lines, MCF7, which carries a heterozygous frameshift mutation in the second zinc finger of GATA3, and T47D, wild-type at this locus.
Methods
Immunofluorescence staining and subcellular fractionation were employed to verify cellular localization of GATA3 in T47D and MCF7 cells. To test protein stability, cells were treated with translation inhibitor, cycloheximide or proteasome inhibitor, MG132, and GATA3 abundance was measured over time using immunoblot. GATA3 turn-over in response to hormone was determined by treating the cells with estradiol or ERα agonist, ICI 182,780. DNA binding ability of recombinant GATA3 was evaluated using electrophoretic mobility shift assay and heparin chromatography. Genomic location of GATA3 in MCF7 and T47D cells was assessed by chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq).
Results
GATA3 localized in the nucleus in T47D and MCF7 cells, regardless of the mutation status. The truncated protein in MCF7 had impaired interaction with chromatin and was easily released from the nucleus. Recombinant mutant GATA3 was able to bind DNA to a lesser degree than the wild-type protein. Heterozygosity for the truncating mutation conferred protection from regulated turnover of GATA3, ERα and FOXA1 following estrogen stimulation in MCF7 cells. Thus, mutant GATA3 uncoupled protein-level regulation of master regulatory transcription factors from hormone action. Consistent with increased protein stability, ChIP-seq profiling identified greater genome-wide accumulation of GATA3 in MCF7 cells bearing the mutation, albeit with a similar distribution across the genome, comparing to T47D cells.
Conclusions
We propose that this specific, cancer-derived mutation in GATA3 deregulates physiologic protein turnover, stabilizes GATA3 binding across the genome and modulates the response of breast cancer cells to estrogen signaling.
【 授权许可】
2014 Adomas et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140724052656307.pdf | 2313KB | download | |
33KB | Image | download | |
71KB | Image | download | |
32KB | Image | download | |
54KB | Image | download | |
47KB | Image | download | |
64KB | Image | download | |
93KB | Image | download | |
32KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, Wilson RK, Ally A, Balasundaram M, Butterfield YSN, Carlsen R, Carter C, Chu A, Chuah E, Chun HJE, Coope RJN, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HYI, Mayo M, Moore RA, Mungall AJ: Comprehensive molecular portraits of human breast tumours. Nature 2012, 490:61-70.
- [2]Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia MM, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J: The landscape of cancer genes and mutational processes in breast cancer. Nature 2012, 486:400-404.
- [3]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou SB, Diaz LA, Kinzler KW: Cancer genome landscapes. Science 2013, 339:1546-1558.
- [4]Yan W, Cao QJ, Arenas RB, Bentley B, Shao R: GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 2010, 285:14042-14051.
- [5]Chou J, Provot S, Werb Z: GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol 2010, 222:42-49.
- [6]Zheng R, Blobel GA: GATA transcription factors and cancer. Genes Cancer 2010, 1:1178-1188.
- [7]Chou J, Lin JH, Brenot A, Kim JW, Provot S, Werb Z: GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 2013, 15:201-213.
- [8]Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z: GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 2008, 13:141-152.
- [9]Dydensborg AB, Rose AAN, Wilson BJ, Grote D, Paquet M, Giguere V, Siegel PM, Bouchard M: GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 2009, 28:2634-2642.
- [10]Ho IC, Tai T-S, Pai S-Y: GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 2009, 9:125-135.
- [11]Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, Hartley L, Robb L, Grosveld FG, van der Wees J, Deb S, Fox SB, Smyth GK, Lindeman GJ, Visvader JE: Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 2007, 9:201-209.
- [12]Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z: GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 2006, 127:1041-1055.
- [13]Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D, Chinnaiyan AM, Kleer CG: Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 2005, 65:11259-11264.
- [14]Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M: Positive Cross-Regulatory Loop Ties GATA-3 to Estrogen Receptor α Expression in Breast Cancer. Cancer Res 2007, 67:6477-6483.
- [15]Oh DS, Troester MA, Usary J, Hu Z, He X, Fan C, Wu J, Carey LA, Perou CM: Estrogen-regulated genes predict survival in hormone receptor–positive breast cancers. J Clin Oncol 2006, 24:1656-1664.
- [16]Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale A-L, Botstein D: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003, 100:8418-8423.
- [17]Kong SL, Li G, Loh SL, Sung WK, Liu ET: Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol Syst Biol 2011, 7:526.
- [18]Theodorou V, Stark R, Menon S, Carroll JS: GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res 2013, 23:12-22.
- [19]Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns J-P, Van de Ven W, Thakker RV, Devriendt K: GATA3 haplo-insufficiency causes human HDR syndrome. Nature 2000, 406:419-422.
- [20]Nesbit MA, Bowl MR, Harding B, Ali A, Ayala A, Crowe C, Dobbie A, Hampson G, Holdaway I, Levine MA, McWilliams R, Rigden S, Sampson J, Williams AJ, Thakker RV: Characterization of GATA3 mutations in the hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome. J Biol Chem 2004, 279:22624-22634.
- [21]Ali A, Christie PT, Grigorieva IV, Harding B, Van Esch H, Ahmed SF, Bitner-Glindzicz M, Blind E, Bloch C, Christin P, Clayton P, Gecz J, Gilbert-Dussardier B, Guillen-Navarro E, Hackett A, Halac I, Hendy GN, Lalloo F, Mache CJ, Mughal Z, Ong AC, Rinat C, Shaw N, Smithson SF, Tolmie J, Weill J, Nesbit MA, Thakker RV: Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR) dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Hum Mol Genet 2007, 16:265-275.
- [22]Gaynor KU, Grigorieva IV, Allen MD, Esapa CT, Head RA, Gopinath P, Christie PT, Nesbit MA, Jones JL, Thakker RV: GATA3 mutations found in breast cancers may be associated with aberrant nuclear localization, reduced transactivation and cell invasiveness. Horm Canc 2013, 4:123-139.
- [23]Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausberg RL, Chanock S, Borresen-Dale AL, Perou CM: Mutation of GATA3 in human breast tumors. Oncogene 2004, 23:7669-7678.
- [24]Fujita N, Wade PA: Use of bifunctional cross-linking reagents in mapping genomic distribution of chromatin remodeling complexes. Methods 2004, 33:81-85.
- [25]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25.
- [26]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010, 38:576-589.
- [27]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30:207-210.
- [28]Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW: Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 1996, 96:1858-1862.
- [29]Yamashita M, Shinnakasu R, Asou H, Kimura M, Hasegawa A, Hashimoto K, Hatano N, Ogata M, Nakayama T: Ras-ERK MAPK cascade regulates GATA3 stability and Th2 differentiation through ubiquitin-proteasome pathway. J Biol Chem 2005, 280:29409-29419.
- [30]Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, Godwin AK, Korach KS, Visvader JE, Kaestner KH: FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development 2010, 137:2045-2054.
- [31]Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M: Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006, 38:1289-1297.
- [32]Bates DL, Chen Y, Kim G, Guo L, Chen L: Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 2008, 381:1292-1306.
- [33]Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 2008, 3:109-118.
- [34]Lin CY, Strom A, Vega VB, Kong SL, Yeo AL, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JA, Liu ET: Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 2004, 5:R66.
- [35]Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X, Perou CM: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010, 12:R68.
- [36]Holliday D, Speirs V: Choosing the right cell line for breast cancer research. Breast Cancer Res 2011, 13:215.
- [37]Loi S, Sotiriou C, Haibe-Kains B, Lallemand F, Conus N, Piccart M, Speed T, McArthur G: Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer. BMC Med Genomics 2009, 2:37.
- [38]Creighton CJ: The molecular profile of luminal B breast cancer. Biol Targets Ther 2012, 6:289-297.
- [39]Tran B, Bedard P: Luminal-B breast cancer and novel therapeutic targets. Breast Cancer Res 2011, 13:221.
- [40]Cui X, Schiff R, Arpino G, Osborne CK, Lee AV: Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 2005, 23:7721-7735.
- [41]Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB: Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 2002, 277:5209-5218.