期刊论文详细信息
BMC Genomics
Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern
Alberto Di Donato2  Francesco Salvatore3  Giovanni Paolella5  Luca Troncone2  Lorenzo Durante2  Luca Cozzuto1  Barbara Naso5  Viviana Izzo4  Valeria Cafaro2  Piergiuseppe Cantiello1  Mauro Petrillo5  Eugenio Notomista2  Valeria D’Argenio5 
[1] CEINGE-Biotecnologie Avanzate, Napoli, Italy;Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy;IRCCS-Fondazione SDN, Naples, Italy;Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Salerno, Italy;Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
关键词: Aromatic pollutant compounds/bioremediation;    Next generation sequencing;    Sphingomonads;    Novosphingobium sp. PP1Y;    De novo sequencing;   
Others  :  1217214
DOI  :  10.1186/1471-2164-15-384
 received in 2013-11-05, accepted in 2014-05-08,  发布年份 2014
PDF
【 摘 要 】

Background

Novosphingobium sp. strain PP1Y is a marine α-proteobacterium adapted to grow at the water/fuel oil interface. It exploits the aromatic fraction of fuel oils as a carbon and energy source. PP1Y is able to grow on a wide range of mono-, poly- and heterocyclic aromatic hydrocarbons. Here, we report the complete functional annotation of the whole Novosphingobium genome.

Results

PP1Y genome analysis and its comparison with other Sphingomonadal genomes has yielded novel insights into the molecular basis of PP1Y’s phenotypic traits, such as its peculiar ability to encapsulate and degrade the aromatic fraction of fuel oils. In particular, we have identified and dissected several highly specialized metabolic pathways involved in: (i) aromatic hydrocarbon degradation; (ii) resistance to toxic compounds; and (iii) the quorum sensing mechanism.

Conclusions

In summary, the unraveling of the entire PP1Y genome sequence has provided important insight into PP1Y metabolism and, most importantly, has opened new perspectives about the possibility of its manipulation for bioremediation purposes.

【 授权许可】

   
2014 D’Argenio et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705093019174.pdf 2055KB PDF download
Figure 4. 64KB Image download
Figure 3. 72KB Image download
Figure 2. 116KB Image download
Figure 1. 163KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Baird WM, Hooven LA, Mahadevan B: Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 2005, 45:106-114.
  • [2]Henry JA: Composition and toxicity of petroleum products and their additives. Hum Exp Toxicol 1998, 17:111-123.
  • [3]King RW: Petroleum: its composition, analysis and processing. Occup Med 1988, 3:409-430.
  • [4]Wang Z, Fingas M, Blenkinsopp S, Sergy G, Landriault M, Sigouin L, Foght J, Semple K, Westlake DW: Comparison of oil composition changes due to biodegradation and physical weathering in different oils. J Chromatogr A 1998, 809:89-107.
  • [5]Sawyer RF: Trends in auto emissions and gasoline composition. Environ Health Perspect 1993, 101:5-12.
  • [6]Liang F, Lu M, Keener TC, Liu Z, Khang SJ: The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator. J Environ Monit 2005, 7:983-988.
  • [7]Notomista E, Pennacchio F, Cafaro V, Smaldone G, Izzo V, Troncone L, Varcamonti M, Di Donato A: The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb Ecol 2011, 61:582-594.
  • [8]Basta T, Keck A, Klein J, Stolz A: Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 2004, 186:3862-3872.
  • [9]Tabata M, Endo R, Ito M, Ohtsubo Y, Kumar A, Tsuda M, Nagata Y: The lin genes for γ-hexachlorocyclohexane degradation in Sphingomonas sp. MM-1 proved to be dispersed across multiple plasmids. Biosci Biotechnol Biochem 2011, 75:466-472.
  • [10]Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M: Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb Technol 2011, 49:499-508.
  • [11]Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M: The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 2012, 4:184-198.
  • [12]Fredrickson JK, Brockman FJ, Workman DJ, Li SW, Stevens TO: Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 1991, 57:796-803.
  • [13]Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ: Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004, 54:1483-1487.
  • [14]Toyama T, Kainuma Y, Kikuchi S, Mori K: Biodegradation of bisphenol A and 4-alkylphenols by Novosphingobium sp. strain TYA-1 and its potential for treatment of polluted water. Water Sci Technol 2012, 66:2202-2208.
  • [15]Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ: Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation 2008, 19:223-233.
  • [16]Coronado E, Roggo C, Johnson DR, van der Meer JR: Genome-wide analysis of salicylate and dibenzofuran metabolism in Sphingomonas wittichii RW1. Front Microbiol 2012, 3:300.
  • [17]Kolvenbach BA, Corvini PF: The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 - a review on seven years of research. Nat Biotechnol 2012, 30:88-95.
  • [18]Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD: Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 1999, 181:1585-1602.
  • [19]Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC, Halden RU: Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 2010, 192:6101-6102.
  • [20]D’Argenio V, Petrillo M, Cantiello P, Naso B, Cozzuto L, Notomista E, Paolella G, Di Donato A, Salvatore F: De novo sequencing and assembly of the whole genome of Novosphingobium sp. strain PP1Y. J Bacteriol 2011, 193:4296.
  • [21]Warren AS, Setubal JC: The Genome Reverse Compiler: an explorative annotation tool. BMC Bioinforma 2009, 10:35. BioMed Central Full Text
  • [22]Baris E, Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH: UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23:1282-1288.
  • [23]Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [24]Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [25]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33:W686-W689.
  • [26]Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, Bateman A: Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 2011, 39:D141-D145.
  • [27]Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: Inference of RNA alignments. Bioinformatics 2009, 25:1335-1337.
  • [28]Gao F, Zhang CT: Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinforma 2008, 9:79. BioMed Central Full Text
  • [29]Gerdes K, Wagner EG: RNA antitoxins. Curr Opin Microbiol 2007, 10:117-124.
  • [30]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [31]Nagata Y, Ohtsubo Y, Endo R, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M: Complete genome sequence of the representative γ-hexachlorocyclohexane-degrading bacterium Sphingobium japonicum UT26. J Bacteriol 2010, 192:5852-5853.
  • [32]Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M: Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in gamma-hexachlorocyclohexane degradation. Appl Environ Microbiol 2006, 72:6923-6933.
  • [33]Moriya Y, Itoh M, Okuda S, Yoshizawa A, Kanehisa M: KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007, 35:182-185.
  • [34]Fuchs G, Boll M, Heider J: Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 2011, 9:803-816.
  • [35]Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, Pucci P, Di Donato A: Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol 2004, 70:2211-2219.
  • [36]Kim D, Chae JC, Zylstra GJ, Kim YS, Kim SK, Nam MH, Kim YM, Kim E: Identification of a Novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. Strain DK17. Appl Environ Microbiol 2004, 70:7086-7092.
  • [37]Andújar E, Hernáez MJ, Kaschabek SR, Reineke W, Santero E: Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product. J Bacteriol 2000, 182:789-795.
  • [38]Paulson IT, Park JH, Choi PS, Saier MH: A family of Gram-negative bacterial outer membrane factors that function in the export of protein, carbohydrates, drugs, and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 1997, 156:1-8.
  • [39]Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M: The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010, 5:e10433.
  • [40]Legatzki A, Grass G, Anton A, Rensing C, Nies DH: Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 2003, 185:4354-4361.
  • [41]Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC: Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev 2009, 33:820-832.
  • [42]Joseph S, Desai P, Ji Y, Cummings CA, Shih R, Degoricija L, Rico A, Brzoska P, Hamby SE, Masood N, Hariri S, Sonbol H, Chuzhanova N, McClelland M, Furtado MR, Forsythe SJ: Comparative analysis of genome sequences covering the seven Cronobacter species. PLoS One 2012, 7:e49455.
  • [43]Taylor DE, Rooker M, Keelan M, Ng LK, Martin I, Perna NT, Burland NT, Blattner FR: Genomic variability of O islands encoding tellurite resistance in Enterohemorrhagic Escherichia coli O157:H7 isolates. J Bacteriol 2002, 184:4690-4698.
  • [44]McLaggan D, Rufino H, Jaspars M, Booth IR: Glutathione-dependent conversion of N-ethylmaleimide to the maleamic acid by Escherichia coli: an intracellular detoxification process. Appl Environ Microbiol 2000, 66:1393-1399.
  • [45]Valton J, Mathevon C, Fontecave M, Nivière V, Ballou DP: Mechanism and regulation of the two-component FMN-dependent monooxygenase ActVA-ActVB from Streptomyces coelicolor. J Biol Chem 2008, 283:10287-10296.
  • [46]Torres Pazmiño DE, Winkler M, Glieder A, Fraaije MW: Monooxygenases as biocatalysts: Classification, mechanistic aspects and biotechnological applications. J Biotechnol 2010, 146:9-24.
  • [47]Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira De Mattos J, Hellingwerf K: The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 2010, 192:746-754.
  • [48]Li YH, Tian X: Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors 2012, 12:2519-2538.
  • [49]Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R: Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 2008, 322:1-16.
  • [50]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [51]Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ: Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
  • [52]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [53]Saitou N, Nei M: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [54]Zuckerkandl E, Pauling L: Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins. Edited by Bryson V, Vogel HJ. New York: Academic Press; 1965:97-166.
  • [55]Viggiani A, Siani L, Notomista E, Birolo L, Pucci P, Di Donato A: The Role of the Conserved Residues His-246, His-199, and Tyr-255 in the Catalysis of Catechol 2,3-Dioxygenase from Pseudomonas stutzeri OX1. J Biol Chem 2004, 279:48630-48639.
  • [56]Wesche J, Hammer E, Becher D, Burchhardt G, Schauer F: The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290. J Appl Microbiol 2005, 98:635-645.
  • [57]Pezzella A, Lista L, Napolitano A, D’Ischia M: An expedient one-pot entry to catecholestrogens and other catechol compounds via IBX-mediated phenolic oxygenation. Tetrahedron Lett 2005, 46:3541-3544.
  文献评价指标  
  下载次数:5次 浏览次数:1次