期刊论文详细信息
BMC Genomics
The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV
Huub JM Op den Camp4  Johan T den Dunnen2  Ken Kraaijeveld3  Arnoud Schmitz1  Arjan Pol4  Jeroen Frank1  Seyed Yahya Anvar1 
[1] Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands;Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands;Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands;Department of Microbiology, Radboud University, Nijmegen, The Netherlands
关键词: Verrucomicrobial methanotrophs;    Gene expression;    Methylation;    Pacific biosciences;    Single molecule sequencing;    Genome assembly;    Methylacidiphilum fumariolicum SolV;   
Others  :  1128442
DOI  :  10.1186/1471-2164-15-914
 received in 2014-03-04, accepted in 2014-10-06,  发布年份 2014
PDF
【 摘 要 】

Background

Aerobic methanotrophs can grow in hostile volcanic environments and use methane as their sole source of energy. The discovery of three verrucomicrobial Methylacidiphilum strains has revealed diverse metabolic pathways used by these methanotrophs, including mechanisms through which methane is oxidized. The basis of a complete understanding of these processes and of how these bacteria evolved and are able to thrive in such extreme environments partially resides in the complete characterization of their genome and its architecture.

Results

In this study, we present the complete genome sequence of Methylacidiphilum fumariolicum SolV, obtained using Pacific Biosciences single-molecule real-time (SMRT) sequencing technology. The genome assembles to a single 2.5 Mbp chromosome with an average GC content of 41.5%. The genome contains 2,741 annotated genes and 314 functional subsystems including all key metabolic pathways that are associated with Methylacidiphilum strains, including the CBB pathway for CO2 fixation. However, it does not encode the serine cycle and ribulose monophosphate pathways for carbon fixation. Phylogenetic analysis of the particulate methane mono-oxygenase operon separates the Methylacidiphilum strains from other verrucomicrobial methanotrophs. RNA-Seq analysis of cell cultures growing in three different conditions revealed the deregulation of two out of three pmoCAB operons. In addition, genes involved in nitrogen fixation were upregulated in cell cultures growing in nitrogen fixing conditions, indicating the presence of active nitrogenase. Characterization of the global methylation state of M. fumariolicum SolV revealed methylation of adenines and cytosines mainly in the coding regions of the genome. Methylation of adenines was predominantly associated with 5′-m6ACN4GT-3′ and 5′-CCm6AN5CTC-3′ methyltransferase recognition motifs whereas methylated cytosines were not associated with any specific motif.

Conclusions

Our findings provide novel insights into the global methylation state of verrucomicrobial methanotroph M. fumariolicum SolV. However, partial conservation of methyltransferases between M. fumariolicum SolV and M. infernorum V4 indicates potential differences in the global methylation state of Methylacidiphilum strains. Unravelling the M. fumariolicum SolV genome and its epigenetic regulation allow for robust characterization of biological processes that are involved in oxidizing methane. In turn, they offer a better understanding of the evolution, the underlying physiological and ecological properties of SolV and other Methylacidiphilum strains.

【 授权许可】

   
2014 Anvar et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150223113001205.pdf 1396KB PDF download
Figure 3. 178KB Image download
Figure 2. 170KB Image download
Figure 1. 282KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou Z, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PL, Liesack W, Feng L, Wang L, Alam M: Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 2007, 450(7171):879-882.
  • [2]Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK: Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 2008, 105(1):300-304.
  • [3]Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJM: Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 2007, 450(7171):874-878.
  • [4]Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environm Microbiol Rep 2009, 1(5):293-306.
  • [5]Hanson RS, Hanson TE: Methanotrophic bacteria. Microbiol Rev 1996, 60(2):439-471.
  • [6]Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF, Kalyuzhnaya MG, Murrell JC, Francoijs KJ, Stunnenberg HG, Stein LY, DiSpirito AA, Semrau JD, Lajus A, Medigue C, Klotz MG, Jetten MS, Op den Camp HJM: Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV. J Bacteriol 2012, 194(14):3729-3730.
  • [7]Hou S, Makarova KS, Saw JH, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M: Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 2008, 3:26. BioMed Central Full Text
  • [8]Khadem AF, Pol A, Wieczorek AS, Jetten MS, Op den Camp HJM: Metabolic Regulation of "Ca. Methylacidiphilum Fumariolicum" SolV Cells Grown Under Different Nitrogen and Oxygen Limitations. Front Microbiol 2012, 3:266.
  • [9]Gonzalez D, Kozdon JB, McAdams HH, Shapiro L, Collier J: The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach. Nucleic Acids Res 2014., 42(6)
  • [10]Wion D, Casadesus J: N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 2006, 4(3):183-192.
  • [11]Roberts RJ, Vincze T, Posfai J, Macelis D: REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010, 38(Database issue):D234-D236.
  • [12]Jeltsch A: Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 2003, 317(1–2):13-16.
  • [13]Davis BM, Chao MC, Waldor MK: Entering the era of bacterial epigenomics with single molecule real time DNA sequencing. Curr Opin Microbiol 2013, 16(2):192-198.
  • [14]Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW: Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010, 7(6):461-465.
  • [15]Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED, Adam MP: Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012, 30(7):693-700.
  • [16]Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J: Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013, 10(6):563-569.
  • [17]Au KF, Underwood JG, Lee L, Wong WH: Improving PacBio long read accuracy by short read alignment. PloS One 2012, 7(10):e46679.
  • [18]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [19]Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, et al.: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33(17):5691-5702.
  • [20]Grigoriev A: Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 1998, 26(10):2286-2290.
  • [21]Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA: Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 2004, 54(Pt 1):151-156.
  • [22]Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN: Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 2011, 61(Pt 10):2456-2463.
  • [23]Kolb S, Knief C, Stubner S, Conrad R: Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 2003, 69(5):2423-2429.
  • [24]Holmes AJ, Costello A, Lidstrom ME, Murrell JC: Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 1995, 132(3):203-208.
  • [25]Luesken FA, Zhu B, Van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJM, Jetten MS, Ettwig KF: pmoA Primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 2011, 77(11):3877-3880.
  • [26]McDonald IR, Murrell JC: The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 1997, 156(2):205-210.
  • [27]Khadem AF, Pol A, Jetten MS, Op den Camp HJM: Nitrogen fixation by the verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' SolV. Microbiology 2010, 156(Pt 4):1052-1059.
  • [28]Clark TA, Lu X, Luong K, Dai Q, Boitano M, Turner SW, He C, Korlach J: Enhanced 5-methylcytosine detection in single-molecule, real-time sequencing via Tet1 oxidation. BMC Biol 2013, 11:4. BioMed Central Full Text
  • [29]Castaldi S, Tedesco D: Methane production and consumption in an active volcanic environment of Southern Italy. Chemosphere 2005, 58(2):131-139.
  • [30]Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin AM, Montmayeur A, Shea TP, Walker BJ, Young SK, Russ C, Nusbaum C, MacCallum I, Jaffe DB: Finished bacterial genomes from shotgun sequence data. Genome Res 2012, 22(11):2270-2277.
  • [31]Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13:341. BioMed Central Full Text
  • [32]Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, Jetten MS, Op den Camp HJM: Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the calvin-benson-bassham cycle for carbon dioxide fixation. J Bacteriol 2011, 193(17):4438-4446.
  • [33]Erikstad HA, Jensen S, Keen TJ, Birkeland NK: Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph 'Methylacidiphilum kamchatkense' Kam1. Extremophiles 2012, 16(3):405-409.
  • [34]Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M: Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 1998, 64(8):3042-3051.
  • [35]Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC: A whole-genome assembly of Drosophila. Science (New York, NY) 2000, 287(5461):2196-2204.
  • [36]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [37]Krumsiek J, Arnold R, Rattei T: Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007, 23(8):1026-1028.
  • [38]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
  • [39]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [40]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [41]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [42]Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O: Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008, 36(Web Server issue):W465-W469.
  • [43]Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res 2005, 15(2):330-340.
  • [44]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56(4):564-577.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [46]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59(3):307-321.
  • [47]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [48]Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE, Boitano M, Fomenkov A, Roberts RJ, Korlach J: Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 2012, 40(4):e29.
  文献评价指标  
  下载次数:32次 浏览次数:8次