期刊论文详细信息
BMC Evolutionary Biology
Mitogenomics of the Old World monkey tribe Papionini
Dietmar Zinner1  Markus Brameier3  Christian Roos2  Rasmus Liedigk3 
[1] Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany;Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany;Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Göttingen, 37077, Germany
关键词: Baboons;    Macaques;    Primates;    mtDNA;    Divergence ages;    Phylogeny;   
Others  :  1117972
DOI  :  10.1186/s12862-014-0176-1
 received in 2014-03-05, accepted in 2014-07-25,  发布年份 2014
PDF
【 摘 要 】

Background

The evolutionary history of the Old World monkey tribe Papionini comprising the genera Macaca, Mandrillus, Cercocebus, Lophocebus, Theropithecus, Rungwecebus and Papio is still matter of debate. Although the African Papionini (subtribe Papionina) are generally considered to be the sister lineage to the Asian Papionini (subtribe Macacina), previous studies based on morphological data, nuclear or mitochondrial sequences have shown contradictory phylogenetic relationships among and within both subtribes. To further elucidate the phylogenetic relationships among papionins and to estimate divergence ages we generated mitochondrial genome data and combined them with previously published sequences.

Results

Our mitochondrial gene tree comprises 33 papionins representing all genera of the tribe except Rungwecebus. In contrast to most previous studies, the obtained phylogeny suggests a division of the Papionini into three main mitochondrial clades with similar ages: 1) Papio, Theropithecus, Lophocebus; 2) Mandrillus, Cercocebus; and 3) Macaca; the Mandrillus + Cercocebus clade appears to be more closely related to Macaca than to the other African Papionini. Further, we find paraphyletic relationships within the Mandrillus + Cercocebus clade as well as in Papio. Relationships among Theropithecus, Lophocebus and Papio remain unresolved. Divergence ages reveal initial splits within the three mitochondrial clades around the Miocene/Pliocene boundary and differentiation of Macaca species groups occurred on a similar time scale as those found between genera of the subtribe Papionina.

Conclusion

Due to the largely well-resolved mitochondrial phylogeny, our study provides new insights into the evolutionary history of the Papionini. Results show some contradictory relationships in comparison to previous analyses, notably the paraphyly within the Cercocebus + Mandrillus clade and three instead of only two major mitochondrial clades. Divergence ages among species groups of macaques are similar to those among African Papionini genera, suggesting that diversification of the mitochondrial genome is of a similar magnitude in both subtribes. However, since our mitochondrial tree represents just a single gene tree that most likely does not reflect the true species tree, extensive nuclear sequence data is required to illuminate the true species phylogeny of papionins and to trace possible ancient hybridization events among lineages.

【 授权许可】

   
2014 Liedigk et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206014239294.pdf 1726KB PDF download
Figure 3. 43KB Image download
Figure 2. 80KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Moore WS: Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 1995, 49:718-726.
  • [2]Hoelzer GA: Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 1997, 51:622-626.
  • [3]Avise JC: Molecular Markers, Natural History, and Evolution. Sinauer Associates, Sunderland, MA; 2004.
  • [4]Maddison WP: Gene trees in species trees. Syst Biol 1997, 46:523-536.
  • [5]Funk DJ, Omland KE: Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Ann Rev Ecol Evol Syst 2003, 34:397-423.
  • [6]Avise JC: Phylogeography: retrospect and prospect. J Biogeograph 2009, 36:3-15.
  • [7]Tosi AJ, Morales JC, Melnick DJ: Y-chromosome and mitochondrial markers in Macaca fascicularis indicate introgression with Indochinese M. mulatta and a biogeographic barrier in the Isthmus of Kra. Int J Primatol 2002, 23:161-178.
  • [8]Storz JF, Ramakrishnan U, Alberts SC: Genetic effective size of a wild primate population: influence of current and historical demography. Evolution 2002, 56:817-829.
  • [9]Roberts TE, Davenport TRB, Hildebrandt KBP, Jones T, Stanley WT, Sargis EJ, Olson LE: The biogeography of introgression in the critically endangered African monkey Rungwecebus kipunji. Biol Lett 2010, 6:233-237.
  • [10]Zinner D, Arnold ML, Roos C: Is the new primate genus Rungwecebus a baboon? PLoS One 2009, 4:e4859.
  • [11]Zinner D, Groeneveld LF, Keller C, Roos C: Mitochondrial phylogeography of baboons (Papio spp.) - Indication for introgressive hybridization? BMC Evol Biol 2009, 9:83.
  • [12]Zinner D, Arnold ML, Roos C: The strange blood: natural hybridization in primates. Evol Anthropol 2011, 20:96-103.
  • [13]Satkoski Trask JA, Garnica WT, Smith DG, Houghton P, Lerche N, Kanthaswamy S: Single-Nucleotide Polymorphisms reveal patterns of allele sharing across the species boundary between rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques. Am J Primatol 2013, 75:135-144.
  • [14]Guevara EE, Steiper ME: Molecular phylogenetic analysis of the Papionina using concatenation and species tree methods. J Human Evol 2014, 66:18-28.
  • [15]Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MPC, Silva A, O'Brien SJ, Pecon-Slattery J: A molecular phylogeny of living primates. PLoS Genet 2011, 7:e1001342.
  • [16]Zinner D, Fickenscher G, Roos C: Family Cercopithecidae (Old World Monkeys). In The Handbook of the Mammals of the World. Edited by Mittermeier RA, Rylands AB, Wilson DE. Lynx Edicions, Barcelona; 2013:550-627.
  • [17]Page SL, Goodman M: Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 2001, 18:14-25.
  • [18]Xing J, Wang H, Han K, Ray DA, Huang CH, Chemnick LG, Stewart CB, Disotell TR, Ryder OA, Batzer MA: A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 2005, 37:872-880.
  • [19]Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C: A mitogenomic phylogeny of living primates. PLoS One 2013, 8:e69504.
  • [20]Pozzi L, Hodgson JA, Burrell AS, Sterner KN, Raaum RL, Disotell TR: Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol Phylogenet Evol 2014, 75:165-183.
  • [21]Delson E: Evolutionary history of the Cercopithecidae. Contrib Primatol 1975, 5:167-217.
  • [22]Stewart CB, Disotell TR: Primate evolution - in and out of Africa. Curr Biol 1998, 8:R582-R588.
  • [23]Groves CP: Primate Taxonomy. Smithsonian Institution Press, Washington, DC; 2001.
  • [24]Böhm M, Mayhew P: Historical biogeography and the evolution of the latitudinal gradient of species richness in the Papionini (Primata: Cercopithecidae). Biol J Linnean Soc 2005, 85:235-246.
  • [25]Jolly CJ: Tribe Papionini. In Mammals of Africa. Edited by Butynski TM, Kingdon J, Kalina J. Bloomsbury Publishing, London; 2013:157-158.
  • [26]Delson E: Fossil macaques, phyletic relationships and a scenario of deployment. In The Macaques: Studies in Ecology, Behavior and Evolution. Edited by Lindhurg D. Van Nostrand Reinhold, New York; 1980:10-30.
  • [27]Alba DM, Delson E, Carnevale G, Colombero S, Delfino M, Giuntelli P, Pavia M, Pavia G: First joint record of Mesopithecus and cf. Macaca in the Miocene of Europe. J Hum Evol 2014, 67:1-18.
  • [28]Gupta VJ, Sahni A: Theropithecus delsoni, a new cercopithecine species from the Upper Siwaliks of India. Bull Ind Geol Ass 1981, 14:69-71.
  • [29]Delson E: Theropithecus fossils from Africa and India and the taxonomy of the genus. In Theropithecus: The Rise and Fall of a Primate Genus. Edited by Jablonski NG. Cambridge University Press, Cambridge; 1993:157-189.
  • [30]Delson E, Eck GG, Leakey MG, Jablonski NG: A partial catalogue of fossil remains of Theropithecus. In Theropithecus: The Rise and Fall of a Primate Genus. Edited by Jablonski NG. Cambridge University Press, Cambridge; 1993:499-525.
  • [31]Pickford M: Climatic change, biogeography, and Theropithecus. In Theropithecus: The Rise and Fall of a Primate Genus. Edited by Jablonski NG. Cambridge University Press, Cambridge; 1993:227-243.
  • [32]Gibert J, Ribot F, Gibert L, Leakey M, Arribas A, Martinez B: Presence of the cercopithecid genus Theropithecus in Cueva Victoria (Murcia, Spain). J Hum Evol 1995, 28:487-493.
  • [33]Rook L, Martínez-Navarro B, Clark Howell F: Occurrence of Theropithecus sp. in the Late Villafranchian of Southern Italy and implication for Early Pleistocene “out of Africa” dispersals. J Hum Evol 2004, 47:267-277.
  • [34]Roberts P, Delson E, Miracle P, Ditchfield P, Roberts RG, Jacobs Z, Blinkhorn J, Ciochon RL, Fleagle JG, Frost SR, Gilbert CC, Gunnell GF, Harrison T, Korisettar R, Petraglia MD: Continuity of mammalian fauna over the last 200,000 y in the Indian subcontinent. Proc Natl Acad Sci U S A 2014, 111(16):5848-5853.
  • [35]Fooden J: Provisional classification and key to living species of macaques (Primates: Macaca). Folia Primatol 1976, 25:225-236.
  • [36]Anandam MV, Bennett EL, Davenport TRB, Davies NJ, Detwiler KM, Engelhardt A, Eudey AA, Gadsby EL, Groves CP, Healy A, Karanth KP, Molur S, Nadler T, Richardson MC, Riley EP, Roos C, Rylands AB, Sheeran LK, Ting N, Wallis J, Waters SS, Whittaker DJ, Zinner D: Species accounts of Cercopithecidae. In The Handbook of the Mammals of the World. Edited by Mittermeier RA, Rylands AB, Wilson DE. Lynx Edicions, Barcelona; 2013:628-753.
  • [37]Tosi AJ, Morales JC, Melnick DJ: Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution 2003, 57:1419-1435.
  • [38]Ziegler T, Abegg C, Meijaard E, Perwitasari-Farajallah D, Walter L, Hodges JK, Roos C: Molecular phylogeny and evolutionary history of Southeast Asian macaques forming the M. silenus group. Mol Phylogenet Evol 2007, 42:807-816.
  • [39]Hayasaka K, Fujii K, Horai S: Molecular phylogeny of macaques: implications of nucleotide sequences from an 896 base pair region of mitochondrial DNA. Mol Biol Evol 1996, 13:1044-1053.
  • [40]Morales JC, Melnick DJ: Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J Hum Evol 1998, 34:1-23.
  • [41]Disotell TR, Honeycutt RL, Ruvolo M: Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini. Mol Biol Evol 1992, 9:1-13.
  • [42]Szalay FS, Delson E: Evolutionary History of the Primates. Academic, New York; 1979.
  • [43]Strasser E, Delson E: Cladistic analysis of cercopithecid relationships. J Hum Evol 1987, 16:81-99.
  • [44]Groves CP: Phylogenetic and population systematics of the mangabeys (Primates: Cercopithecoidea). Primates 1978, 19:1-34.
  • [45]Fleagle JG, McGraw WS: Skeletal and dental morphology supports diphyletic origin of baboons and mandrills. Proc Natl Acad Sci U S A 1999, 96:1157-1161.
  • [46]Gilbert CC: Craniomandibular morphology supporting the diphyletic origin of mangabeys and a new genus of the Cercocebus/Mandrillus clade, Procercocebus. J Hum Evol 2007, 53:69-102.
  • [47]Harris EE, Disotell TR: Nuclear gene trees and the phylogenetic relationships of the mangabeys (Primates: Papionini). Mol Biol Evol 1998, 15:892-900.
  • [48]Harris EE: Molecular systematics of the Old World monkey tribe Papionini: analysis of the total available genetic sequences. J Hum Evol 2000, 38:235-256.
  • [49]Jones T, Ehardt CL, Butynski TM, Davenport TRB, Mpunga NE, Machaga SJ, De Luca DW: The highland mangabey Lophocebus kipunji: a new species of African monkey. Science 2005, 308:1161-1164.
  • [50]Davenport TRB, Stanley WT, Sargis EJ, De Luca DW, Mpunga NE, Machaga SJ, Olson LE: A new genus of African monkey, Rungwecebus: morphology, ecology, and molecular phylogenetics. Science 2006, 312:1378-1381.
  • [51]Burrell AS, Jolly CJ, Tosi AJ, Disotell TR: Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylogenet Evol 2009, 51:340-348.
  • [52]Newman TK, Jolly CJ, Rogers J: Mitochondrial phylogeny and systematics of baboons (Papio). Am J Phys Anthropol 2004, 124:17-27.
  • [53]Wildman DE, Bergman TJ, al-Aghbari A, Sterner KN, Newman TK, Phillips-Conroy JE, Jolly CJ, Disotell TR: Mitochondrial evidence for the origin of hamadryas baboons. Mol Phylogenet Evol 2004, 32:287-296.
  • [54]Zinner D, Wertheimer J, Liedigk R, Groeneveld LF, Roos C: Baboon phylogeny as inferred from complete mitochondrial genomes. Am J Phys Anthropol 2013, 150:133-140.
  • [55]Fleagle JG, McGraw WS: Skeletal and dental morphology of African papionins: unmasking a cryptic clade. J Hum Evol 2002, 42:267-292.
  • [56]Chatterjee HJ, Ho SYW, Barnes I, Groves C: Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 2009, 9:259.
  • [57]Chan YC, Roos C, Inoue-Murayama M, Inoue E, Shih CC, Pei KJC, Vigilant L: Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons. PLoS One 2010, 5:e14419.
  • [58]Chiou KL, Pozzi L, Lynch Alfaro JW, Di Fiore A: Pleistocene diversification of living squirrel monkeys (Saimiri spp.) inferred from complete mitochondrial genome sequences. Mol Phylogenet Evol 2011, 59:736-745.
  • [59]Roos C, Zinner D, Kubatko L, Schwarz C, Yang M, Meyer D, Nash S, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farjajjah D, Nadler T, Walter L, Osterholz M: Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 2011, 11:77.
  • [60]Liedigk R, Yang M, Jablonski NG, Momberg F, Geissmann T, Lwin N, Hla TH, Liu Z, Wong B, Ming L, Yongcheng L, Zhang YP, Nadler T, Zinner D, Roos C: Evolutionary history of the odd-nosed monkeys and the phylogenetic position of the newly described Myanmar snub-nosed monkey Rhinopithecus strykeri. PLoS One 2012, 7:e37418.
  • [61]Supplementary data from: Mitogenomics of the Old World monkey tribe Papionini. Dryad Digital Repository.[http://doi:10.5061/dryad.9tm42]
  • [62]Bouckaert RR: DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 2010, 26:1372e1373.
  • [63]Pollard DA, Iyer VN, Moses AM, Eisen MB: Widespread discordance of gene trees with species tree in Drosophila: evidence for incomplete lineage sorting. PLoS Genet 2006, 2:e173.
  • [64]Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR: Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 2005, 48:237-257.
  • [65]Steiper ME, Young NM: Primate molecular divergence dates. Mol Phylogenet Evol 2006, 41:384-394.
  • [66]Li J, Han K, Xing J, Kim HS, Rogers J, Ryder OA, Disotell T, Yue B, Batzer MA: Phylogeny of macaques (Cercopithecidae: Macaca) based on Alu elements. Gene 2009, 448:242-249.
  • [67]Pollock DD, Zwickl DJ, Mcguire JA, Hillis DM: Increased taxon sampling is advantageous for phylogenetic inference. Syst Biol 2002, 51:664-671.
  • [68]Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 2002, 51:588-598.
  • [69]Townsend JP, Leuenberger C: Taxon sampling and the optimal rates of evolution for phylogenetic inference. Syst Biol 2011, 60:358-365.
  • [70]Nabhan AR, Sarkar IN: The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Brief Bioinform 2012, 13:122-134.
  • [71]Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janecka JE, Fisher CA, Murphy WJ: Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS One 2012, 7:e49521.
  • [72]McGraw WS, Fleagle JG: Biogeography and evolution of the Cercocebus- Mandrillus clade: evidence from the face. In Primate Biogeography: Progress and Prospects. Edited by Lehman SM, Fleagle JG. Springer, New York; 2006:201-224.
  • [73]Ito T, Nishimura T, Takai M: Ecogeographical and phylogenetic effects on craniofacial variation in macaques. Am J Phys Anthropol 2014, 154:27-41.
  • [74]Maddison WP, Knowles LL: Inferring phylogeny despite incomplete lineage sorting. Syst Biol 2006, 55:21-30.
  • [75]Keller C, Roos C, Groeneveld LF, Fischer J, Zinner D: Introgressive hybridization in southern African baboons shapes patterns of mtDNA variation. Am J Phys Anthropol 2010, 142:125-136.
  • [76]Arnold ML, Meyer A: Natural hybridization in primates: one evolutionary mechanism. Zoology 2006, 109:261-276.
  • [77]Chiarelli B: Check-list of catarrhina primate hybrids. J Hum Evol 1973, 2:301-305.
  • [78]Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V: Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 2013, 62:539-554.
  • [79]Kingdon J: The Kingdon Field Guide to African Mammals. Academic, London; 1997.
  • [80]Gilbert CC, Rossie JB: Congruence of molecules and morphology using a narrow allometric approach. Proc Natl Acad Sci U S A 2007, 104:11910-11914.
  • [81]Gilbert CC: African papionin phylogenetic history and Plio-Pleistocene biogeography, PhD thesis. Stony Brook University; 2008.
  • [82]Gilbert CC: Cladistic analysis of extant and fossil African papionins using craniodental data. J Hum Evol 2013, 64:399-433.
  • [83]Fooden J: Classification and distribution of living macaques. In The Macaques: Studies in Ecology, Behavior, and Evolution. Edited by Lindburg DG. Van Nostrand-Reinhold, New York; 1980:1-9.
  • [84]Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP: Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 1998, 9:585-598.
  • [85]Groves CP: The what, why and how of primate taxonomy. Int J Primatol 2004, 25:1105-1126.
  • [86]Thalmann O, Hebler J, Poinar HN, Pääbo S, Vigilant L: Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes. Mol Ecol 2004, 13:321-325.
  • [87]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27:221-224.
  • [88]Wyman SK, Jansen RK, Boore JL: Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20:3252-3255.
  • [89]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [90]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.
  • [91]Swofford DL: PAUP* Phylogenetic Analysis using Parsimony (*and other Methods), Version 4. Sinauer Associates, Sunderland; 2003.
  • [92]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [93]Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP: Bayesian inference of phylogeny and its impact on evolutionary biology. Science 2001, 294:2310-2314.
  • [94]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [95]Posada D: Selection of models of DNA evolution with jModelTest. Methods Mol Biol 2009, 537:93-112.
  • [96]Gelman A, Rubin D: Inference from iterative simulation using multiple sequences. Stat Sci 1992, 7:457-511.
  • [97][http://tree.bio.ed.ac.uk/software/tracer/] webcite Rambaut A, Drummond AJ: Tracer: MCMC trace analysis tool, version 1.5..
  • [98]Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL: AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008, 24:581-583.
  • [99]Kishino H, Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and their branching order of Hominoidea. J Mol Evol 1989, 29:170-179.
  • [100]Shimodaira H, Hasegawa M: Multiple comparisons of log likelihoods with applications to phylogenetic inference. Mol Biol Evol 1999, 16:1114-1116.
  • [101]Drummond AJ, Ho SY, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [102]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
  • [103]Vignaud P, Duringer P, Mackaye HT, Likius A, Blondel C, Boisserie JR, De Bonis L, Eisenmann V, Etienne ME, Geraads D, Guy F, Lehmann T, Lihoreau F, Lopez-Martinez N, Mourer-Chauvire C, Otero O, Rage JC, Schuster M, Viriot L, Zazzo A, Brunet M: Geology and palaeontology of the upper Miocene Toros-Menalla hominid locality, Chad. Nature 2002, 418:152-155.
  • [104]Brunet M, Guy F, Pilbeam D, Lieberman DE, Likius A, Mackaye HT, Ponce de León MS, Zollikofer CP, Vignaud P: New material of the earliest hominid from the upper Miocene of Chad. Nature 2005, 434:752-755.
  • [105]Lebatard AE, Bourles DL, Duringer P, Jolivet M, Braucher R, Carcaillet J, Schuster M, Arnaud N, Monie P, Lihoreau F, Likius A, Mackaye HT, Vignaud P, Brunet M: Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proc Natl Acad Sci U S A 2008, 105:3226-3323.
  • [106]Kelley J: The hominoid radiation in Asia. In The Primate Fossil Record. Edited by Hartwig WC. Cambridge University Press, Cambridge; 2002:369-384.
  • [107]Leakey MG: Evolution of Theropithecus in the Turkana Basin. In Theropithecus: The Rise and Fall of a Primate Genus. Edited by Jablonski NG. Cambridge University Press, Cambridge; 1993:85-123.
  • [108]Delson E: Cercopithecinae. In Encyclopedia of Human Evolution and Prehistory. Edited by Delson E, Tattersall I, Couvering JA, Brooks AS. Garland Publishing Inc, New York; 2000:166-171.
  • [109]Zalmout IS, Sanders WJ, MacLatchy LM, Gunnell GF, Al-Mufarreh YA, Ali MA, Nasser AAH, Al-Masari AM, Al-Sobhi SA, Nadhra AO, Matari AH, Wilson JA, Gingerich PD: New Oligocene primate from Saudi Arabia and the divergence of apes and Old World monkeys. Nature 2010, 466:360-365.
  • [110]Pozzi L, Hodgson JA, Burrell AS, Disotell TR: The stem catarrhine Saadanius does not inform the timing of the origin of crown catarrhines. J Hum Evol 2011, 61:209-210.
  • [111]Stevens NJ, Seiffert ER, O’Connor PM, Roberts EM, Schmitz MD, Krause C, Gorscak E, Ngasala S, Hieronymus TL, Temu J: Palaeontological evidence for an Oligocene divergence between Old World monkeys and apes. Nature 2013, 497:611-614.
  • [112][http://tree.bio.ed.ac.uk/software/figtree/] webcite Rambaut A: FigTree: tree figure drawing tool, version 1.4.0..
  • [113]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25:2286-2288.
  • [114]Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 1998, 15:1647-1657.
  文献评价指标  
  下载次数:13次 浏览次数:14次