期刊论文详细信息
BMC Research Notes
Assessment of RNAi-induced silencing in banana (Musa spp.)
Serge Remy3  Rony Swennen4  Bruno PA Cammue1  Barbara De Coninck1  Isabelle M Henry2  Saskia Windelinckx3  Tuong Vi T Dang3 
[1]Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
[2]Department of Plant Biology and Genome Center, U.C.Davis, 451 E. Health Sciences Drive, Davis, CA 95616, USA
[3]Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
[4]International Institute of Tropical Agriculture, P.O. Box 10, Duluti, Arusha, Tanzania
关键词: Transgene silencing;    ihpRNA vector;    GUS expression;    Embryogenic cell suspension;    Banana;   
Others  :  1129374
DOI  :  10.1186/1756-0500-7-655
 received in 2014-09-01, accepted in 2014-09-11,  发布年份 2014
PDF
【 摘 要 】

Background

In plants, RNA- based gene silencing mediated by small RNAs functions at the transcriptional or post-transcriptional level to negatively regulate target genes, repetitive sequences, viral RNAs and/or transposon elements. Post-transcriptional gene silencing (PTGS) or the RNA interference (RNAi) approach has been achieved in a wide range of plant species for inhibiting the expression of target genes by generating double-stranded RNA (dsRNA). However, to our knowledge, successful RNAi-application to knock-down endogenous genes has not been reported in the important staple food crop banana.

Results

Using embryogenic cell suspension (ECS) transformed with ß-glucuronidase (GUS) as a model system, we assessed silencing of gusAINT using three intron-spliced hairpin RNA (ihpRNA) constructs containing gusAINT sequences of 299-nt, 26-nt and 19-nt, respectively. Their silencing potential was analysed in 2 different experimental set-ups. In the first, Agrobacterium-mediated co-transformation of banana ECS with a gusAINT containing vector and an ihpRNA construct resulted in a significantly reduced GUS enzyme activity 6–8 days after co-cultivation with either the 299-nt and 19-nt ihpRNA vectors. In the second approach, these ihpRNA constructs were transferred to stable GUS-expressing ECS and their silencing potential was evaluated in the regenerated in vitro plants. In comparison to control plants, transgenic plants transformed with the 299-nt gusAINT targeting sequence showed a 4.5 fold down-regulated gusA mRNA expression level, while GUS enzyme activity was reduced by 9 fold. Histochemical staining of plant tissues confirmed these findings. Northern blotting used to detect the expression of siRNA in the 299-nt ihpRNA vector transgenic in vitro plants revealed a negative relationship between siRNA expression and GUS enzyme activity. In contrast, no reduction in GUS activity or GUS mRNA expression occurred in the regenerated lines transformed with either of the two gusAINT oligo target sequences (26-nt and 19-nt).

Conclusions

RNAi-induced silencing was achieved in banana, both at transient and stable level, resulting in significant reduction of gene expression and enzyme activity. The success of silencing was dependent on the targeted region of the target gene. The successful generation of transgenic ECS for second transformation with (an)other construct(s) can be of value for functional genomics research in banana.

【 授权许可】

   
2014 Dang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226040500577.pdf 916KB PDF download
Figure 7. 43KB Image download
Figure 6. 27KB Image download
Figure 5. 96KB Image download
Figure 4. 32KB Image download
Figure 3. 45KB Image download
Figure 2. 34KB Image download
Figure 1. 18KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Silva CD, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, et al.: The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012, 488:213-219.
  • [2]Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J: A draft Musa balbisiana genome sequence for molecular genetics in polyploidy, inter- and intra-specific Musa hybrids. BMC Genomics 2013, 14:683. BioMed Central Full Text
  • [3]McGinnis MK: RNAi for Functional Genomics in Plants. In Briefings in Functional Genomics. 9th edition. Oxford: Oxford University Press; 2010:111-117.
  • [4]Prelich G: Gene overexpression: uses, mechanisms, and interpretation. Genetics 2012, 190:841-854.
  • [5]Remy S, Buyens A, Cammue BPA, Swennen R, Sági L: Production of transgenic banana plants expressing antifungal proteins. Acta Hort 1998, 490:433-436.
  • [6]Remy S, François I, Cammue BPA, Swennen R, Sági L: Co-transformation as a potential tool to create multiple and durable resistance in banana (Musa spp.). Acta Hort 1998, 461:361-365.
  • [7]Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro J-P, Thiry E, Strosse H, Swennen R, Remy S: Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 2012, 22:117-130.
  • [8]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, et al.: Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301(5633):653-657.
  • [9]Athma P, Grotewold E, Peterson T: Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 1992, 131:199-209.
  • [10]Greco R, Ouwerkerk BF, Sallaud C, Kohli A, Colombo L, Puigdomènech P, Guiderdoni E, Christou P, Hoge JHC, Pereira A: Transposon insertional mutagenesis in rice. Plant Physiol 2001, 125:1175-1177.
  • [11]Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS: Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 2008, 54(2):335-347.
  • [12]Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA: A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 2000, 22(3):265-274.
  • [13]Remy S, Thiry E, Coesmans B, Windelinckx S, Swennen R, Sági L: Improved T-DNA vector for tagging plant promoters via high-throughput luciferase screening. BioTechniques 2005, 38:763-770.
  • [14]Santos E, Remy S, Thiry E, Windelinckx S, Swennen R, Sági L: Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress. BMC Plant Biol 2009, 9:77. BioMed Central Full Text
  • [15]Tuschl T: RNA interference and small interfering RNAs. Chem Biochem 2001, 2:239-245.
  • [16]Hammond SM, Caudy AA, Hannon GJ: Post-transcriptional gene silencing by double-stranded RNA. Nature Rev Genet 2001, 2:110-119.
  • [17]Lawrence RJ, Pikaard CS: Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 2003, 36:114-121.
  • [18]Miki D, Itoh R, Shimamoto K: RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 2005, 138:1903-1913.
  • [19]Travella S, Klimm TE, Keller B: RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 2006, 142:6-20.
  • [20]Kim DH, Rossi JJ: RNAi mechanisms and applications. Biotechniques 2008, 44(5):613-616.
  • [21]Hoffer P, Ivashuta S, Pontes O, Vitins A, Pikaard C, Mroczka A, Wagner N, Voelker T: Posttranscriptional gene silencing in nuclei. Proc Natl Acad Sci U S A 2011, 108(1):409-414.
  • [22]Parent J-S, de Alba AEM, Vaucheret H: The origin and effect of small RNA signaling in plants. Front Plant Sci 2012, 3:179.
  • [23]Hamilton A, Voinnet O, Chappell L, Baulcome D: Two classes of short interfering RNA in RNA silencing. The EMBO J 2002, 21:4671-4679.
  • [24]Tang G, Reinhart BJ, Bartel DP, Zamore PD: A biochemical framework for RNA silencing in plants. Genes Dev 2003, 17:49-63.
  • [25]Gasciolli V, Mallory AC, Bartel DP, Vaucheret H: Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 2005, 15:1494-1500.
  • [26]Brosnan CA, Voinnet O: Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 2011, 14:580-587.
  • [27]Vaucheret H: Plant ARGONAUTES. Trends Plant Sci 2008, 13(7):350-358.
  • [28]Mei C, Zhou X, Yang Y: Use of RNA interference to dissect defense-signaling pathways in rice. Methods Mol Biol 2007, 354:161-171.
  • [29]McGinnis K: Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 2007, 143:1441-1451.
  • [30]Ge H, Chen C, Jing W, Zhang Q, Wang H, Wang R, Zhang W: The rice diacylglycerol kinase family: functional analysis using transient RNA interference. Front Plant Sci 2012, 3:60.
  • [31]Andrieu A, Breitler JC, Siré C, Meynard D, Gantet P, Guiderdoni E: An in planta, Agrobacterium-mediated transient gene expression method for inducing gene silencing in rice (Oryza sativa L.) leaves. Rice 2012, 5:23. BioMed Central Full Text
  • [32]Ingelbrecht IL, Irvine JE, Mirkov TE: Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 1999, 119(4):1187-1198.
  • [33]Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M: Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 2010, 61(5):1469-1482.
  • [34]Wang T, Iyer LM, Pancholy R, Shir X, Hall TC: Assessment of penetration and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol 2005, 167(3):751-760.
  • [35]Dare AP, Tomes S, Jones M, McGhie TK, Stevenson DE, Johnson RA, Greenwood DR, Hellens RP: Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus x domestica). Plant J 2013, 74:398-410.
  • [36]Lu S, Shi R, Tsao CC, Yi X, Li L, Chiang VL: RNA silencing in plants by the expression of siRNA duplexes. Nucleic Acids Res 2004, 32(21):e171.
  • [37]Waterhouse PM, Graham MW, Wang MB: Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 1998, 95:13959-13964.
  • [38]Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, Sági L: SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. Theor Appl Genet 2005, 111:1118-1126.
  • [39]Pérez Hernández JB, Remy S, Swennen R, Sági L: Banana (Musa sp.). In Agrobacterium Protocols. 2nd edition. Edited by Wang K. New York City: Humana Press Inc; 2006:167-175.
  • [40]Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, Swennen R: Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci 2006, 170(1):104-112.
  • [41]Hamilton AJ, Baulcombe DC: A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286:950-952.
  • [42]Zamore PD, Tuschl T, Sharp PA, Bartel DP: RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101:25-33.
  • [43]Elbashir SM, Lendeckel W, Tuschl T: RNA interference is mediated by 21-and 22- nucleotide RNAs. Genes Dev 2001, 15:188-200.
  • [44]Vaucheret H, Béclin C, Fagard M: Post-transcriptional gene silencing in plants. J Cell Sci 2001, 114:3083-3091.
  • [45]Johansen LK, Carrington JC: Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 2001, 126:930-938.
  • [46]Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM: Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 2001, 27(6):581-590.
  • [47]Thomas CL, Jones L, Baulcombe DC, Maule AJ: Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J 2001, 25(4):417-425.
  • [48]Hoffmann T, Kalinowski G, Schwab W: RNAi-induced silencing of gene expression in strawberry fruit (Fragaria x ananassa) by agroinfiltration: a rapid assay for gene function analysis. The Plant J 2006, 48:818-826.
  • [49]Bhaskar PB, Venkateshwaran M, Wu L, Ané J-M, Jiang J: Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS ONE 2009, 4(6):e5812.
  • [50]Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM: Total silencing by intron-spliced hairpin RNAs. Nature 2000, 407:319-320.
  • [51]Yan P, Shen W, Gao X, Li X, Zhou P, Duan J: High-throughput construction of intron-containing hairpin RNA vectors for RNAi in plants. PLoS ONE 2012, 7(5):e38186.
  • [52]Bertazzon N, Raiola A, Castiglioni C, Gardiman M, Angelini E, Borgo M, Ferrari S: Transient silencing of the grapevine gene VvPgIP1 by agroinfiltration with a construct for RNA interference. Plant Cell Rep 2012, 31:133-143.
  • [53]Guleria P, Yadav SK: Agrobacterium mediated transient silencing (AMTS) in Stevia rebaudiana: insights into steviol glycoside biosynthesis pathway. PLoS ONE 2013, 8(9):e74731.
  • [54]Zhang Y, Wang Y, Wang C: Gene overexpression and gene silencing in birch using an Agrobacterium-mediated transient expression system. Mol Biol Rep 2012, 39:5537-5541.
  • [55]Shekhawat UKS, Ganapathi TR, Srinivas L, Bapat VA, Rathore TS: Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. Plant Cell Tiss Organ Cult 2008, 92:261-271.
  • [56]Bezanilla M, Perroud PF, Pan A, Klueh P, Quatrano RS: An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identifications of loss of function phenotypes. Plant Biol 2005, 7:251-257.
  • [57]Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B, Mourrain P, Palauqui J-C, Vernhettes S: Transgene-induced gene silencing in plants. The Plant J 1998, 16:651-659.
  • [58]Paul J, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL: Apoptosis-related genes confer resistance to fusarium wilt in transgenic ‘lady finger’ bananas. Plant Biotech J 2011, 9:1141-1148.
  • [59]Shekhawat UKS, Ganapathi TR, Hadapad AB: Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. J Gen Virol 2012, 93:1804-1813.
  • [60]Kumar GBS, Srinivas L, Ganapathi TR: Iron fortification of banana by the expression of soybean ferritin. Biol Trace Elem Res 2011, 142:232-241.
  • [61]Dhed’a D, Dumortier F, Panis B, Vuysteke D, De Langhe E: Plant regeneration in cell suspension cultures of the cooking banana cv. Bluggoe (Musa spp. ABB group). Fruits 1991, 46:125-135.
  • [62]De Bondt A, Eggermont K, Druart P, Vil MD, Goderis I, Vanderleyden J, Broekaert WF: Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep 1994, 13:587-593.
  • [63]Hood EE, Chilton WS, Chilton MD, Fraley RT: T-DNA and opine synthetic loci tumors incited by Agrobacterium tumefaciens A281 on soybean and alfalfa plants. J Bacteriol 1986, 168(3):1283-1290.
  • [64]Greenup AG, Sasani S, Oliver SN, Talbot MJ, Dennis ES, Hemming MN, Trevaskis B: ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals. Plant Physiol 2010, 153:1062-1073.
  • [65]Hood EE, Gelvin SB, Melchers LS, Hoekema A: New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 1993, 2(4):208-218.
  • [66]Aljanabi SM, Martinez I: Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 1997, 25(22):4692-4693.
  • [67]Podevin N, Krauss A, Henry I, Swennen R, Remy S: Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. Mol Breed 2012, 30:1237-1252.
  • [68]Bradford MM: A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding. Anal Biochem 1976, 72:248-254.
  • [69]Jefferson RA: Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 1987, 5(4):387-405.
  文献评价指标  
  下载次数:18次 浏览次数:2次