期刊论文详细信息
BMC Evolutionary Biology
Postglacial species displacement in Triturus newts deduced from asymmetrically introgressed mitochondrial DNA and ecological niche models
Jan W Arntzen2  Ben Wielstra1 
[1] Faculty of Geo-Information Science and Earth Observation – ITC, University of Twente, P.O. Box 6, 7500 AA, Enschede, The Netherlands;Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA, Leiden, The Netherlands
关键词: Phylogeography;    Historical biogeography;    Ecological niche modeling;    Contact zone;   
Others  :  1140367
DOI  :  10.1186/1471-2148-12-161
 received in 2012-06-01, accepted in 2012-08-25,  发布年份 2012
PDF
【 摘 要 】

Background

If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model.

Results

We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii.

Conclusion

The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and the signal derived from ecological niche modeling, we do not favor the hypothesis that foreign mitochondrial DNA was pulled into the T. macedonicus range by natural selection.

【 授权许可】

   
2012 Wielstra and Arntzen; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150324234953115.pdf 3435KB PDF download
Figure 6. 61KB Image download
Figure 5. 261KB Image download
Figure 4. 60KB Image download
Figure 3. 69KB Image download
Figure 2. 154KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Coyne JA, Orr HA: Speciation. Sinauer Associates, Sunderland; 2004.
  • [2]Chan KMA, Levin SA: Leaky prezygotic isolation and porous genomes: Rapid introgression of maternally inherited DNA. Evolution 2005, 59(4):720-729.
  • [3]Excoffier L, Foll M, Petit RJ: Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 2009, 40:481-501.
  • [4]Currat M, Ruedi M, Petit RJ, Excoffier L: The hidden side of invasions: Massive introgression by local genes. Evolution 2008, 62(8):1908-1920.
  • [5]Petit RJ, Excoffier L: Gene flow and species delimitation. Trends Ecol Evol 2009, 24(7):386-393.
  • [6]Galtier N, Nabholz B, Glemin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol Ecol 2009, 18(22):4541-4550.
  • [7]Gyllensten U, Wharton D, Wilson AC: Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. J Hered 1985, 76(5):321-324.
  • [8]Ballard JWO, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol 2004, 13(4):729-744.
  • [9]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405(6789):907-913.
  • [10]Kozak KH, Graham CH, Wiens JJ: Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 2008, 23(3):141-148.
  • [11]Svenning J-C, Fløjgaard C, Marske KA, Nógues-Bravo D, Normand S: Applications of species distribution modeling to paleobiology. Quaternary Sci Rev 2011, 30(21–22):2930-2947.
  • [12]Wielstra B, Espregueira Themudo G, Güclü Ö, Olgun K, Poyarkov NA, Arntzen JW: Cryptic crested newt diversity at the Eurasian transition: The mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol Phylogenet Evol 2010, 56(3):888-896.
  • [13]Wielstra B, Arntzen JW: Unraveling the rapid radiation of crested newts (Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol Biol 2011, 11:162. BioMed Central Full Text
  • [14]Arntzen JW: Triturus cristatus Superspecies - Kammolch-Artenkreis (Triturus cristatus (Laurenti, 1768) - Nördlicher Kammolch, Triturus carnifex (Laurenti, 1768) - Italienischer Kammolch, Triturus dobrogicus (Kiritzescu, 1903) - Donau-Kammolch, Triturus karelinii (Strauch, 1870) - Südlicher Kammolch). In Handbuch der Reptilien und Amphibien Europas Schwanzlurche IIA. Edited by Grossenbacher K, Thiesmeier B. Aula-Verlag, Wiebelsheim; 2003:421-514.
  • [15]Espregueira Themudo G, Wielstra B, Arntzen JW: Multiple nuclear and mitochondrial genes resolve the branching order of a rapid radiation of crested newts (Triturus, Salamandridae). Mol Phylogenet Evol 2009, 52(2):321-328.
  • [16]Wiens JJ, Sparreboom M, Arntzen JW: Crest evolution in newts: Implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties. J Evol Biol 2011, 24(10):2073-2086.
  • [17]Arntzen JW, Wielstra B: Where to draw the line? A nuclear genetic perspective on proposed range boundaries of the crested newts Triturus karelinii and T. arntzeni. Amphibia-Reptilia 2010, 31(3):311-322.
  • [18]Arntzen JW: Genetic variation in the Italian crested newt, Triturus carnifex, and the origin of a non-native population north of the Alps. Biodivers Conserv 2001, 10(6):971-987.
  • [19]Arntzen JW, Wallis GP: Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): Morphological and mitochondrial data. Contrib Zool 1999, 68(3):181-203.
  • [20]Wallis GP, Arntzen JW: Mitochondrial-DNA variation in the crested newt superspecies: Limited cytoplasmic gene flow among species. Evolution 1989, 43(1):88-104.
  • [21]Arntzen JW, Espregueira Themudo G, Wielstra B: The phylogeny of crested newts (Triturus cristatus superspecies): Nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the centre of origin. Contrib Zool 2007, 76(4):261-278.
  • [22]McGuire JA, Linkem CW, Koo MS, Hutchison DW, Lappin AK, Orange DI, Lemos-Espinal J, Riddle BR, Jaeger JR: Mitochondrial introgression and incomplete lineage sorting through space and time: Phylogenetics of crotaphytid lizards. Evolution 2007, 61(12):2879-2897.
  • [23]Bryson JRW, De Oca AN-M, Jaeger JR, Riddle BR: Elucidation of cryptic diversity in a widespread Nearctic treefrog reveals episodes of mitochondrial gene capture as frogs diversified across a dynamic landscape. Evolution 2010, 64(8):2315-2330.
  • [24]Bossu CM, Near TJ: Gene trees reveal repeated instances of mitochondrial DNA introgression in orangethroat darters (Percidae: Etheostoma). Syst Biol 2009, 58(1):114-129.
  • [25]Liu K, Wang F, Chen W, Tu L, Min M-S, Bi K, Fu J: Rampant historical mitochondrial genome introgression between two species of green pond frogs, Pelophylax nigromaculatus and P. plancyi. BMC Evol Biol 2010, 10(1):201. BioMed Central Full Text
  • [26]Beysard M, Perrin N, Jaarola M, Heckel G, Vogel P: Asymmetric and differential gene introgression at a contact zone between two highly divergent lineages of field voles (Microtus agrestis). J Evol Biol 2012, 25(2):400-408.
  • [27]Haldane JBS: Sex ratio and unisexual sterility in hybrid animals. J Genet 1922, 12(2):101-109.
  • [28]Macgregor HC: An introduction to animal cytogenetics. Chapman & Hall, London; 1993.
  • [29]Lamb T, Avise JC: Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: The influence of mating behavior. Proc Natl Acad Sci USA 1986, 83(8):2526-2530.
  • [30]Arntzen JW, Jehle R, Bardakci F, Burke T, Wallis GP: Asymmetric viability of reciprocal-cross hybrids between crested and marbled newts (Triturus cristatus and T. marmoratus). Evolution 2009, 63(5):1191-1202.
  • [31]Rand DM: The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 2001, 32:415-448.
  • [32]Niki Y, Chigusa SI, Matsuura ET: Complete replacement of mitochondrial DNA in Drosophila. Nature 1989, 341(6242):551-552.
  • [33]Irwin DE, Rubtsov AS, Panov EN: Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (Emberiza leucocephalos) (Aves: Passeriformes). Biol J Linn Soc 2009, 98(2):422-438.
  • [34]Plötner J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex GD, Reyer HU, Hotz H: Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol 2008, 21(3):668-681.
  • [35]Babik W, Branicki W, Crnobrnja-Isailovic J, Cogalniceanu D, Sas I, Olgun K, Poyarkov NA, Garcia-Paris M, Arntzen JW: Phylogeography of two European newt species - Discordance between mtDNA and morphology. Mol Ecol 2005, 14(8):2475-2491.
  • [36]Toews DPL, Brelsford A: The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 2012, 21(16):3907-3930.
  • [37]Arntzen JW, Wallis GP: Restricted gene flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France. Evolution 1991, 45(4):805-826.
  • [38]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19(12):1572-1574.
  • [39]Nylander JAA: MrModelTest2. Computer program distributed by the author. In Evolutionary Biology Centre. Uppsala University, Sweden; 2004.
  • [40]Rambaut A, Drummond AJ: Tracer v1.4. , ; 2007. http://beast.bio.ed.ac.uk/Tracer webcite
  • [41]Teacher AGF, Griffiths DJ: HapStar: Automated haplotype network layout and visualization. Mol Ecol Resour 2011, 11(1):151-153.
  • [42]Excoffier L, Lischer HEL: Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10(3):564-567.
  • [43]Librado P, Rozas J: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [44]Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9(3):552-569.
  • [45]Ramos-Onsins SE, Rozas J: Statistical properties of bew beutrality tests against population growth. Mol Biol Evol 2002, 19(12):2092-2100.
  • [46]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005, 25(15):1965-1978.
  • [47]Rödder D, Schmidtlein S, Veith M, Lötters S: Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? PLoS One 2009, 4(11):e7843.
  • [48]Austin M: Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol Model 2007, 200(1–2):1-19.
  • [49]Guisan A, Thuiller W: Predicting species distribution: Offering more than simple habitat models. Ecol Lett 2005, 8(9):993-1009.
  • [50]Peterson AT: Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 2011, 38(5):817-827.
  • [51]Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, et al.: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Clim Past 2007, 3(2):261-277.
  • [52]Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, et al.: The Community Climate System Model Version 3 (CCSM3). J Climate 2006, 19(11):2122-2143.
  • [53]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model 2006, 190(3–4):231-259.
  • [54]Elith J, Kearney M, Phillips S: The art of modelling range-shifting species. Methods Ecol Evol 2010, 1(4):330-342.
  • [55]VanDerWal J, Shoo LP, Graham C, Williams SE: Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol Model 2009, 220(4):589-594.
  • [56]Raes N, ter Steege H: A null-model for significance testing of presence-only species distribution models. Ecography 2007, 30(5):727-736.
  • [57]Warren DL, Glor RE, Turelli M: ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33(3):607-611.
  文献评价指标  
  下载次数:274次 浏览次数:33次