期刊论文详细信息
BMC Genomics
Transcriptional profiling reveals functional links between RasGrf1 and Pttg1 in pancreatic beta cells
Eugenio Santos1  Alberto Fernandez-Medarde1  Nuria Calzada1  Carmela Gomez1  Monica Arribas1  Lara Manyes1 
[1]Centro de Investigación del Cáncer, IBMCC (CSIC-USAL), University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
关键词: Transcriptional factors;    Transcriptomics;    Pancreatic islets;    Pttg1;    Beta cells;    RasGrf1;    ERK;    Ras;   
Others  :  1091156
DOI  :  10.1186/1471-2164-15-1019
 received in 2014-09-09, accepted in 2014-11-06,  发布年份 2014
PDF
【 摘 要 】

Background

Our prior characterization of RasGrf1 deficient mice uncovered significant defects in pancreatic islet count and size as well as beta cell development and signaling function, raising question about the mechanisms linking RasGrf1 to the generation of those “pancreatic” phenotypes.

Results

Here, we compared the transcriptional profile of highly purified pancreatic islets from RasGrf1 KO mice to that of WT control animals using commercial oligonucleotide microarrays. RasGrf1 elimination resulted in differential gene expression of numerous components of MAPK- and Calcium-signaling pathways, suggesting a relevant contribution of this GEF to modulation of cellular signaling in the cell lineages integrating the pancreatic islets. Whereas the overall transcriptional profile of pancreatic islets was highly specific in comparison to other organs of the same KO mice, a significant specific repression of Pttg1 was a common transcriptional alteration shared with other tissues of neuroectodermal origin. This observation, together with the remarkable pancreatic phenotypic similarities between RasGrf1 KO and Pttg1 KO mice suggested the possibility of proximal functional regulatory links between RasGrf1 and Pttg1 in pancreatic cell lineages expressing these proteins.

Analysis of the mPttg1 promoter region identified specific recognition sites for numerous transcription factors which were also found to be differentially expressed in RasGrf1 KO pancreatic islets and are known to be relevant for Ras-ERK signaling as well as beta cell function. Reporter luciferase assays in BT3 insulinoma cells demonstrated the ability of RasGrf1 to modulate mPttg1 promoter activity through ERK-mediated signals. Analysis of the phenotypic interplay between RasGrf1 and Pttg1 in double knockout RasGrf1/Pttg1 mice showed that combined elimination of the two loci resulted in dramatically reduced values of islet and beta cell count and glucose homeostasis function which neared those measured in single Pttg1 KO mice and were significantly lower than those observed in individual RasGrf1 KO mice.

Conclusions

The specific transcriptional profile and signaling behavior of RasgGrf1 KO pancreatic islets, together with the dominance of Pttg1 over RasGrf1 with regards to the generation of these phenotypes in mouse pancreas, suggest that RasGrf1 is an important upstream component of signal transduction pathways regulating Pttg1 expression and controlling beta cell development and physiological responses.

【 授权许可】

   
2014 Manyes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128165959368.pdf 3261KB PDF download
Figure 8. 55KB Image download
Figure 7. 124KB Image download
Figure 6. 48KB Image download
Figure 5. 80KB Image download
Figure 4. 178KB Image download
Figure 3. 86KB Image download
Figure 2. 86KB Image download
Figure 1. 81KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Fernandez-Medarde A, Santos E: The RasGrf family of mammalian guanine nucleotide exchange factors. Biochim Biophys Acta 2011, 1815(2):170-188.
  • [2]Santos E, Fernández-Medarde A: RasGrf1. Nature Signaling Gateway 2009. doi:10.1038/mp.a002032.01
  • [3]Feig LA: Regulation of Neuronal Function by Ras-GRF Exchange Factors. Genes Cancer 2011, 2(3):306-319.
  • [4]Chen L, Zhang LJ, Greer P, Tung PS, Moran MF: A murine CDC25/ras-GRF-related protein implicated in Ras regulation. Dev Genet 1993, 14(5):339-346.
  • [5]Fam NP, Fan WT, Wang Z, Zhang LJ, Chen H, Moran MF: Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras. Mol Cell Biol 1997, 17(3):1396-1406.
  • [6]Guerrero C, Rojas JM, Chedid M, Esteban LM, Zimonjic DB, Popescu NC, Font de Mora J, Santos E: Expression of alternative forms of Ras exchange factors GRF and SOS1 in different human tissues and cell lines. Oncogene 1996, 12(5):1097-1107.
  • [7]Gotoh T, Niino Y, Tokuda M, Hatases O, Nakamura S, Matsuda M, Hattori S: Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J Biol Chem 1997, 272:18602-18607.
  • [8]Quilliam LA, Castro AF, Rogers-Graham KS, Martin CB, Der CJ, Bi C: M-Ras/R-Ras3, a transforming ras protein regulated by Sos1, GRF1, and p120 Ras GTPase-activating protein, interacts with the putative Ras effector AF6. J Biol Chem 1999, 274(34):23850-23857.
  • [9]Kiyono M, Satoh T, Kaziro Y: G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc Natl Acad Sci U S A 1999, 96(9):4826-4831.
  • [10]Freshney NW, Goonesekera SD, Feig LA: Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain. FEBS Lett 1997, 407(1):111-115.
  • [11]Cullen PJ, Lockyer PJ: Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 2002, 3(5):339-348.
  • [12]Mattingly RR: Phosphorylation of serine 916 of Ras-GRF1 contributes to the activation of exchange factor activity by muscarinic receptors. J Biol Chem 1999, 274:37379-37384.
  • [13]Baouz S, Jacquet E, Accorsi K, Hountondji C, Balestrini M, Zippel R, Sturani E, Parmeggiani A: Sites of phosphorylation by protein kinase A in CDC25Mm/GRF1, a guanine nucleotide exchange factor for Ras. J Biol Chem 2001, 276:1742-1749.
  • [14]Arozarena I, Aaronson DS, Matallanas D, Sanz V, Ajenjo N, Tenbaum SP, Teramoto H, Ighishi T, Zabala JC, Gutkind JS, Crespo P: The Rho family GTPase Cdc42 regulates the activation of Ras/MAP kinase by the exchange factor Ras-GRF. J Biol Chem 2000, 275:26441-26448.
  • [15]Kiyono M, Kaziro Y, Satoh T: Induction of rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) following phosphorylation by the nonreceptor tyrosine kinase Src. J Biol Chem 2000, 275(8):5441-5446.
  • [16]Itier J-M, Tremp GL, Leonard J-F, Multon MC, Ret G, Schweighoffer F, Tocque B, Bluet-Pajot M-T, Cormier V, Dautry F: Imprinted gene in postnatal growth role. Nature 1998, 393:125-126.
  • [17]Font de Mora J, Esteban LM, Burks DJ, Nunez A, Garces C, Garcia-Barrado MJ, Iglesias-Osma MC, Moratinos J, Ward JM, Santos E: Ras-GRF1 signaling is required for normal beta-cell development and glucose homeostasis. Embo J 2003, 22(12):3039-3049.
  • [18]Fernandez-Medarde A, Barhoum R, Riquelme R, Porteros A, Nunez A, de Luis A, de Las RJ, de la Villa P, Varela-Nieto I, Santos E: RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J Neurochem 2009, 110(2):641-652.
  • [19]Hysi PG, Young TL, Mackey DA, Andrew T, Fernandez-Medarde A, Solouki AM, Hewitt AW, Macgregor S, Vingerling JR, Li YJ, Ikram MK, Fai LY, Sham PC, Manyes L, Porteros A, Lopes MC, Carbonaro F, Fahy SJ, Martin NG, van Duijn CM, Spector TD, Rahi JS, Santos E, Klaver CC, Hammond CJ: A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat Genet 2010, 42(10):902-905.
  • [20]Efrat S, Fleischer N, Hanahan D: Diabetes induced in male transgenic mice by expression of human H-ras oncoprotein in pancreatic beta cells. Mol Cell Biol 1990, 10(4):1779-1783.
  • [21]Mor A, Aizman E, George J, Kloog Y: Ras inhibition induces insulin sensitivity and glucose uptake. PLoS One 2011, 6(6):e21712.
  • [22]Trumper J, Ross D, Jahr H, Brendel MD, Goke R, Horsch D: The Rap-B-Raf signalling pathway is activated by glucose and glucagon-like peptide-1 in human islet cells. Diabetologia 2005, 48(8):1534-1540.
  • [23]Amaral ME, Cunha DA, Anhe GF, Ueno M, Carneiro EM, Velloso LA, Bordin S, Boschero AC: Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy. J Endocrinol 2004, 183(3):469-476.
  • [24]Gupta RK, Gao N, Gorski RK, White P, Hardy OT, Rafiq K, Brestelli JE, Chen G, Stoeckert CJ Jr, Kaestner KH: Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev 2007, 21(7):756-769.
  • [25]Hoffmann A, Spengler D: Transient neonatal diabetes mellitus gene Zac1 impairs insulin secretion in mice through Rasgrf1. Mol Cell Biol 2012, 32(13):2549-2560.
  • [26]Fernandez-Medarde A, Esteban LM, Nunez A, Porteros A, Tessarollo L, Santos E: Targeted disruption of Ras-Grf2 shows its dispensability for mouse growth and development. Mol Cell Biol 2002, 22(8):2498-2504.
  • [27]Martin CC, Svitek CA, Oeser JK, Henderson E, Stein R, O'Brien RM: Upstream stimulatory factor (USF) and neurogenic differentiation/beta-cell E box transactivator 2 (NeuroD/BETA2) contribute to islet-specific glucose-6-phosphatase catalytic-subunit-related protein (IGRP) gene expression. Biochem J 2003, 371(Pt 3):675-686.
  • [28]Marzo N, Mora C, Fabregat ME, Martin J, Usac EF, Franco C, Barbacid M, Gomis R: Pancreatic islets from cyclin-dependent kinase 4/R24C (Cdk4) knockin mice have significantly increased beta cell mass and are physiologically functional, indicating that Cdk4 is a potential target for pancreatic beta cell mass regeneration in Type 1 diabetes. Diabetologia 2004, 47(4):686-694.
  • [29]Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC: Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998, 17(22):6649-6659.
  • [30]Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G: Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000, 408(6815):994-997.
  • [31]Wang Z, Moro E, Kovacs K, Yu R, Melmed S: Pituitary tumor transforming gene-null male mice exhibit impaired pancreatic beta cell proliferation and diabetes. Proc Natl Acad Sci U S A 2003, 100(6):3428-3432.
  • [32]Fernandez-Medarde A, Porteros A, de las Rivas J, Nunez A, Fuster JJ, Santos E: Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning. Neuroscience 2007, 146(1):272-285.
  • [33]Arava Y, Seger R, Walker MD: GRFbeta, a novel regulator of calcium signaling, is expressed in pancreatic beta cells and brain. J Biol Chem 1999, 274(35):24449-24452.
  • [34]Ferrari C, Zippel R, Martegani E, Gnesutta N, Carrera V, Sturani E: Expression of two different products of CDC25Mm, a mammalian Ras activator, during development of mouse brain. Exp Cell Res 1994, 210(2):353-357.
  • [35]Lantz KA, Vatamaniuk MZ, Brestelli JE, Friedman JR, Matschinsky FM, Kaestner KH: Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest 2004, 114(4):512-520.
  • [36]Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
  • [37]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 98(9):5116-5121.
  • [38]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995, 57(1):289-300.
  • [39]Diaz Perez JA: Neuroendocrine system of the pancreas and gastrointestinal tract: origin and development. Endocrinol Nutr 2009, 56(Suppl 2):2-9.
  • [40]Westermark P, Andersson A, Westermark GT: Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011, 91(3):795-826.
  • [41]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [42]Navarro-Tableros V, Sanchez-Soto MC, Garcia S, Hiriart M: Autocrine regulation of single pancreatic beta-cell survival. Diabetes 2004, 53(8):2018-2023.
  • [43]Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J: Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006, 55(9):2470-2478.
  • [44]Berggren PO, Ostenson CG, Petersson B, Hellman B: Evidence for divergent glucose effects on calcium metabolism in pancreatic beta- and alpha 2-cells. Endocrinology 1979, 105(6):1463-1468.
  • [45]Ichijo H: From receptors to stress-activated MAP kinases. Oncogene 1999, 18(45):6087-6093.
  • [46]Heit JJ, Apelqvist AA, Gu X, Winslow MM, Neilson JR, Crabtree GR, Kim SK: Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 2006, 443(7109):345-349.
  • [47]Papadimitriou A, King AJ, Jones PM, Persaud SJ: Anti-apoptotic effects of arachidonic acid and prostaglandin E2 in pancreatic beta-cells. Cell Physiol Biochem 2007, 20(5):607-616.
  • [48]Zhao Z, Zhang X, Zhao C, Choi J, Shi J, Song K, Turk J, Ma ZA: Protection of pancreatic beta-cells by group VIA phospholipase A(2)-mediated repair of mitochondrial membrane peroxidation. Endocrinology 2010, 151(7):3038-3048.
  • [49]Larsson-Nyren G, Grapengiesser E, Hellman B: Phospholipase A2 is important for glucose induction of rhythmic Ca2+ signals in pancreatic beta cells. Pancreas 2007, 35(2):173-179.
  • [50]Ouwens DM, de Ruiter ND, van der Zon GC, Carter AP, Schouten J, van der Burgt C, Kooistra K, Bos JL, Maassen JA, van Dam H: Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. The EMBO journal 2002, 21(14):3782-3793.
  • [51]Yokoyama T, Nakamura T: Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci 2011, 102(6):1115-1122.
  • [52]Gallo A, Cuozzo C, Esposito I, Maggiolini M, Bonofiglio D, Vivacqua A, Garramone M, Weiss C, Bohmann D, Musti AM: Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene 2002, 21(42):6434-6445.
  • [53]Cozar-Castellano I, Fiaschi-Taesch N, Bigatel TA, Takane KK, Garcia-Ocana A, Vasavada R, Stewart AF: Molecular control of cell cycle progression in the pancreatic beta-cell. Endocr Rev 2006, 27(4):356-370.
  • [54]Kutz SM, Higgins CE, Samarakoon R, Higgins SP, Allen RR, Qi L, Higgins PJ: TGF-beta 1-induced PAI-1 expression is E box/USF-dependent and requires EGFR signaling. Exp Cell Res 2006, 312(7):1093-1105.
  • [55]Lechtken A, Hornig M, Werz O, Corvey N, Zundorf I, Dingermann T, Brandes R, Steinhilber D: Extracellular signal-regulated kinase-2 phosphorylates RORalpha4 in vitro. Biochem Biophys Res Commun 2007, 358(3):890-896.
  • [56]Marais R, Wynne J, Treisman R: The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 1993, 73(2):381-393.
  • [57]van de Pavert SA, Meuleman J, Malysheva A, Aartsen WM, Versteeg I, Tonagel F, Kamphuis W, McCabe CJ, Seeliger MW, Wijnholds J: A single amino acid substitution (Cys249Trp) in Crb1 causes retinal degeneration and deregulates expression of pituitary tumor transforming gene Pttg1. J Neurosci 2007, 27(3):564-573.
  • [58]Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA: Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 1998, 26(1):362-367.
  • [59]Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A: GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res 2012, 40(Web Server issue):W478-483.
  • [60]Houslay MD: Hard times for oncogenic BRAF-expressing melanoma cells. Cancer Cell 2011, 19(1):3-4.
  • [61]Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, Tsai SY, Tsai MJ, Studer M, Rubenstein JL: COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 2008, 18(9):2117-2131.
  • [62]Krstic A, Kocic J, Ilic V, Mojsilovic S, Okic-Dordevic I, Trivanovic D, Santibanez JF, Jovcic G, Bugarski D: Effects of IL-17 on erythroid progenitors growth: involvement of MAPKs and GATA transcription factors. J Biol Regul Homeost Agents 2012, 26(4):641-652.
  • [63]Yamane H, Zhu J, Paul WE: Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J Exp Med 2005, 202(6):793-804.
  • [64]Kim HS, Cho JW, Hidaka K, Morisaki T: Activation of MEK-ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells. Biochem Biophys Res Commun 2007, 361(3):732-738.
  • [65]Papaiahgari S, Kleeberger SR, Cho HY, Kalvakolanu DV, Reddy SP: NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. J Biol Chem 2004, 279(40):42302-42312.
  • [66]Tong T, Fan W, Zhao H, Jin S, Fan F, Blanck P, Alomo I, Rajasekaran B, Liu Y, Holbrook NJ, Zhan Q: Involvement of the MAP kinase pathways in induction of GADD45 following UV radiation. Exp Cell Res 2001, 269(1):64-72.
  • [67]Stoeckius M, Erat A, Fujikawa T, Hiromura M, Koulova A, Otterbein L, Bianchi C, Tobiasch E, Dagon Y, Sellke FW, Usheva A: Essential roles of Raf/extracellular signal-regulated kinase/mitogen-activated protein kinase pathway, YY1, and Ca2+ influx in growth arrest of human vascular smooth muscle cells by bilirubin. J Biol Chem 2012, 287(19):15418-15426.
  • [68]Yang SH, Sharrocks AD, Whitmarsh AJ: Transcriptional regulation by the MAP kinase signaling cascades. Gene 2003, 320:3-21.
  • [69]Lawrence M, Shao C, Duan L, McGlynn K, Cobb MH: The protein kinases ERK1/2 and their roles in pancreatic beta cells. Acta physiologica (Oxford, England) 2008, 192(1):11-17.
  • [70]Nakabayashi H, Ohta Y, Yamamoto M, Susuki Y, Taguchi A, Tanabe K, Kondo M, Hatanaka M, Nagao Y, Tanizawa Y: Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1beta gene expression in pancreatic islet beta-cells. Biochem Biophys Res Commun 2013, 434(2):370-375.
  • [71]Sprinkel AM, Andersen NA, Mandrup-Poulsen T: Glucose potentiates interleukin-1 beta (IL-1 beta)-induced p38 mitogen-activated protein kinase activity in rat pancreatic islets of Langerhans. Eur Cytokine Netw 2001, 12(2):331-339.
  • [72]Kobberup S, Nyeng P, Juhl K, Hutton J, Jensen J: ETS-family genes in pancreatic development. Dev Dyn 2007, 236(11):3100-3110.
  • [73]Gulbinas A, Berberat PO, Dambrauskas Z, Giese T, Giese N, Autschbach F, Kleeff J, Meuer S, Buchler MW, Friess H: Aberrant gata-3 expression in human pancreatic cancer. J Histochem Cytochem 2006, 54(2):161-169.
  • [74]Cerf ME: Transcription factors regulating beta-cell function. Eur J Endocrinol 2006, 155(5):671-679.
  • [75]Lee S, Hur EG, Ryoo IG, Jung KA, Kwak J, Kwak MK: Involvement of the Nrf2-proteasome pathway in the endoplasmic reticulum stress response in pancreatic beta-cells. Toxicol Appl Pharmacol 2012, 264(3):431-438.
  • [76]Darville MI, Terryn S, Eizirik DL: An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells. Endocrinology 2004, 145(3):1130-1136.
  • [77]Li T, Bai L, Li J, Igarashi S, Ghishan FK: Sp1 is required for glucose-induced transcriptional regulation of mouse vesicular glutamate transporter 2 gene. Gastroenterology 2008, 134(7):1994-2003.
  • [78]Markovic J, Grdovic N, Dinic S, Karan-Djurasevic T, Uskokovic A, Arambasic J, Mihailovic M, Pavlovic S, Poznanovic G, Vidakovic M: PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells. PLoS One 2013, 8(3):e59679.
  • [79]Clem AL, Hamid T, Kakar SS: Characterization of the role of Sp1 and NF-Y in differential regulation of PTTG/securin expression in tumor cells. Gene 2003, 322:113-121.
  • [80]Habener JF, Kemp DM, Thomas MK: Minireview: transcriptional regulation in pancreatic development. Endocrinology 2005, 146(3):1025-1034.
  • [81]Wang Z, Melmed S: Characterization of the murine pituitary tumor transforming gene (PTTG) and its promoter. Endocrinology 2000, 141(2):763-771.
  • [82]Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkeskov S: Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A 1988, 85(23):9037-9041.
  • [83]Hernandez A, Lopez-Lluch G, Bernal JA, Navas P, Pintor-Toro JA: Dicoumarol down-regulates human PTTG1/Securin mRNA expression through inhibition of Hsp90. Mol Cancer Ther 2008, 7(3):474-482.
  • [84]Chamaon K, Kirches E, Kanakis D, Braeuninger S, Dietzmann K, Mawrin C: Regulation of the pituitary tumor transforming gene by insulin-like-growth factor-I and insulin differs between malignant and non-neoplastic astrocytes. Biochem Biophys Res Commun 2005, 331(1):86-92.
  • [85]Thompson AD 3rd, Kakar SS: Insulin and IGF-1 regulate the expression of the pituitary tumor transforming gene (PTTG) in breast tumor cells. FEBS Lett 2005, 579(14):3195-3200.
  • [86]Wang Z, Yu R, Melmed S: Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol Endocrinol 2001, 15(11):1870-1879.
  • [87]Sund NJ, Vatamaniuk MZ, Casey M, Ang SL, Magnuson MA, Stoffers DA, Matschinsky FM, Kaestner KH: Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes Dev 2001, 15(13):1706-1715.
  • [88]Maitra A, Hansel DE, Argani P, Ashfaq R, Rahman A, Naji A, Deng S, Geradts J, Hawthorne L, House MG, Yeo CJ: Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligonucleotide microarrays. Clin Cancer Res 2003, 9(16 Pt 1):5988-5995.
  • [89]Castellano E, De Las RJ, Guerrero C, Santos E: Transcriptional networks of knockout cell lines identify functional specificities of H-Ras and N-Ras: significant involvement of N-Ras in biotic and defense responses. Oncogene 2007, 26(6):917-933.
  • [90]Hochberg Y, Benjamini Y: More powerful procedures for multiple significance testing. Stat Med 1990, 9(7):811-818.
  • [91]Murtagh F: Multidimensional clustering algorithms. In COMPSTAT Lectures, Volume 4. Wuerzburg: Physica-Verlag; 1985.
  • [92]Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA: Identifying biological themes within lists of genes with EASE. Genome Biol 2003, 4(10):R70. BioMed Central Full Text
  • [93]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
  • [94]Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M: Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005, 434(7031):338-345.
  • [95]Lacal JC, Aaronson SA: ras p21 deletion mutants and monoclonal antibodies as tools for localization of regions relevant to p21 function. Proc Natl Acad Sci U S A 1986, 83(15):5400-5404.
  • [96]Oyhenart J, Le Goffic R, Samson M, Jegou B, Raich N: Phtf1 is an integral membrane protein localized in an endoplasmic reticulum domain in maturing male germ cells. Biol Reprod 2003, 68(3):1044-1053.
  • [97]D’Ambra R, Surana M, Efrat S, Starr RG, Fleischer N: Regulation of insulin secretion from beta-cell lines derived from transgenic mice insulinomas resembles that of normal beta-cells. Endocrinology 1990, 126(6):2815-2822.
  • [98]Heimann M, Roth DR, Ledieu D, Pfister R, Classen W: Sublingual and submandibular blood collection in mice: a comparison of effects on body weight, food consumption and tissue damage. Lab Anim 2010, 44(4):352-358.
  • [99]Levene H: Contributions to Probability and Statistics. In Essays in Honor of Harold Hotelling. Edited by Ingram Olkin HH. Stanford, CA: Stanford University Press; 1960:278-292.
  • [100]Welch PD: The Statistical analysis of simulation results. In Computer Performance Modeling Handbook. Edited by Lavenberg S. New York: Academic Press; 1983:268-330.
  • [101]Field A: DIscovering Statistics using SPSS. London: SAGE Publications Ltd.; 2009.
  文献评价指标  
  下载次数:35次 浏览次数:10次