期刊论文详细信息
BMC Systems Biology
Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development
Nicolas P Smith1  Sander Land1  Steven A Niederer1  Kristin Tøndel2 
[1] Department of Biomedical Engineering, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK;Simula Research Laboratory, Martin Linges v. 17/25, Rolfsbukta 4B, Fornebu 1364, Norway
关键词: Cardiac contraction;    Computational Biology;    Model reduction;    Experimental design;    Zooming into feasible parameter space regions;    Parameter space exploration;    Multivariate metamodelling;    Parameter estimation;   
Others  :  866365
DOI  :  10.1186/1752-0509-8-59
 received in 2013-12-18, accepted in 2014-04-29,  发布年份 2014
【 摘 要 】

Background

Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms.

Results

The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets.

Conclusions

Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity.

【 授权许可】

   
2014 Tøndel et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 1. 97KB Image download
37KB Image download
37KB Image download
36KB Image download
31KB Image download
41KB Image download
36KB Image download
48KB Image download
38KB Image download
32KB Image download
39KB Image download
32KB Image download
23KB Image download
56KB Image download
36KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Nickerson DP, Hunter PJ: The Noble cardiac ventricular electrophysiology models in CellML. Prog Biophys Mol Biol 2006, 90:346-359.
  • [2]Smith NP, Crampin EJ, Niederer SA, Bassingthwaighte JB, Beard DA: Computational biology of cardiac myocytes: proposed standards for the physiome. J Exp Biol 2007, 210(Pt 9):1576-1583.
  • [3]Niederer SA, Fink M, Noble D, Smith NP: A meta-analysis of cardiac electrophysiology computational models. Exp Physiol 2009, 94:486-495.
  • [4]Hunter PJ, Borg TK: Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 2003, 4:237-243.
  • [5]Tøndel K, Indahl UG, Gjuvsland AB, Omholt SW, Martens H: Multi-way metamodelling facilitates insight into the complex input–output maps of nonlinear dynamic models. BMC Syst Biol 2012, 6:88.
  • [6]Tøndel K, Indahl UG, Gjuvsland AB, Vik JO, Hunter P, Omholt SW, Martens H: Hierarchical Cluster-based Partial Least Squares Regression is an efficient tool for metamodelling of nonlinear dynamic models. BMC Syst Biol 2011, 5:90.
  • [7]Isaeva J, Martens M, Sæbø S, Wyller JA, Martens H: The modelome of line curvature: Many nonlinear models approximated by a single bi-linear metamodel with verbal profiling. Phys Nonlinear Phenom 2012, 241:877-889.
  • [8]Isaeva J, Sæbo S, Wyller JA, Nhek S, Martens H: Fast and comprehensive fitting of complex mathematical models to massive amounts of empirical data. Chemometr Intell Lab 2012, 117:13-21.
  • [9]Isaeva J, Sæbø S, Wyller JA, Wolkenhauer O, Martens H: Nonlinear modelling of curvature by bi-linear metamodelling. Chemometr Intell Lab 2012, 117:2-12.
  • [10]Pearson K: On lines and planes of closest fit to systems of points in space. Philos Mag 1901, 2:559-572.
  • [11]Jolliffe IT: A Note on the Use of Principal Components in Regression. J R Stat Soc: Ser C: Appl Stat 1982, 31:300-303.
  • [12]Murty KG: Linear Programming. New York, USA: John Wiley & Sons, Inc; 1983.
  • [13]Kirkpatrick S, Gelatt CD, Vecchi MP: Optimization by Simulated Annealing. Science 1983, 220:671-680.
  • [14]Marquardt DW: An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J Soc Ind Appl Math 1963, 11:431-441.
  • [15]Niederer SA, Hunter PJ, Smith NP: A Quantitative Analysis of Cardiac Myocyte Relaxation: A Simulation Study. Biophys J 2006, 90:1697-1722.
  • [16]Land S, Niederer SA, Aronsen JM, Espe EKS, Zhang L, Louch WE, Sjaastad I, Sejersted OM, Smith NP: An analysis of deformation-dependent electromechanical coupling in the mouse heart. J Physiol 2012, 590(Pt 18):4553-4569.
  • [17]Land S: An integrative framework for computational modelling of cardiac electromechanics in the mouse. UK: Doctoral Thesis, University of Oxford; 2013.
  • [18]Gordon AM, Homsher E, Regnier M: Regulation of contraction in striated muscle. Physiol Rev 2000, 80:853-924.
  • [19]Rice JJ, Wang F, Bers DM, de Tombe PP: Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 2008, 95:2368-2390.
  • [20]Hunter PJ, McCulloch AD, ter Keurs HE: Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 1998, 69:289-331.
  • [21]McKay MD, Los ASL, Beckman RJ, Conover WJ: Comparison the three methods for selecting values of input variable in the analysis of output from a computer code. Technometrics 1979, 21:239-245.
  • [22]Land S, Louch WE, Niederer SA, Aronsen JM, Christensen G, Sjaastad I, Sejersted OM, Smith NP: Beta-adrenergic stimulation maintains cardiac function in Serca2 knockout mice. Biophys J 2013, 104:1349-1356.
  • [23]MATLAB®. Natick, Massachusetts, USA: The MathWorks, Inc; 2012.
  • [24]Lawson CL, Hanson RJ: Solving Least Squares Problems. New Jersey, USA: Society for Industrial and Applied Mathematics, Prentice-Hall, Inc.; 1974.
  • [25]Martens M, Martens H: Partial Least Squares regression. In Stat Proced Food Res JR Piggott Ed. London: Elsevier Applied Sciences; 1986:293-360.
  • [26]Martens H, Næs T: Multivariate Calibration. Chichester, UK: John Wiley and Sons; 1989.
  • [27]Martens H, Martens M: Multivariate Analysis of Quality: An Introduction. 1st edition. Chichester, UK: John Wiley & Sons Ltd; 2001.
  • [28]Wold S, Martens H, Wold H: The multivariate calibration method in chemistry solved by the PLS method. In Lect Notes Math Matrix Pencils. Heidelberg: Springer-Verlag; 1983:286-293.
  • [29]Tøndel K, Vik JO, Martens H, Indahl UG, Smith N, Omholt SW: Hierarchical multivariate regression-based sensitivity analysis reveals complex parameter interaction patterns in dynamic models. Chemometr Intell Lab 2013, 120:25-41.
  • [30]Tøndel K, Gjuvsland AB, Måge I, Martens H: Screening design for computer experiments: Metamodelling of a deterministic mathematical model of the mammalian circadian clock. J Chemometr 2010, 24:738-747.
  • [31]Bezdek JC: Pattern Recognition with Fuzzy Objective Function Algorithms. Norwell, USA: Kluwer Academic Publishers; 1981.
  • [32]Berget I, Mevik B-H, Næs T: New modifications and applications of fuzzy C-means methodology. Comput Stat Data Anal 2008, 52:2403-2418.
  • [33]Næs T, Kubberød E, Sivertsen H: Identifying and interpreting market segments using conjoint analysis. Food Qual Prefer 2001, 12:133-143.
  • [34]Næs T, Isaksson T: Splitting of calibration data by cluster analysis. J Chemometr 1991, 5:49-65.
  • [35]Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP: Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLoS Comput Biol 2007, 3:e189.
  • [36]Cacuci DG, Ionescu-Bujor M, Navon IM: Sensitivity and Uncertainty Analysis: Applications to Large-Scale Systems Vol 2. 1st edition. Boca Raton, USA: CRC Press; 2005.
  • [37]Kleijnen JPC: Design and Analysis of Simulation Experiments. 1st edition. New York, USA: Springer; 2007.
  • [38]Vik JO, Gjuvsland AB, Li L, Tøndel K, Niederer SA, Smith N, Hunter PJ, Omholt SW: Genotype-phenotype map characteristics of an in silico heart cell. Front Physiol 2011, 2:106.
  • [39]Sobol IM: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 2001, 55:271-280.
  • [40]Nelder JA, Mead R: A Simplex Method for Function Minimization. Comput J 1965, 7:308-313.
  • [41]El Tabach E, Lancelot L, Shahrour I, Najjar Y: Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project. Math Comput Model 2007, 45:766-776.
  • [42]Hamilton J: The Kalman Filter. In Time Ser Anal. Volume 13. New Jersey, USA: Princeton University Press; 1994.
  • [43]Sarkar AX, Sobie EA: Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells. PLoS Comput Biol 2010., 6
  • [44]Radulescu O, Gorban AN, Zinovyev A, Noel V: Reduction of dynamical biochemical reactions networks in computational biology. Front Gene 2012, 3:131.
  文献评价指标  
  下载次数:204次 浏览次数:17次