期刊论文详细信息
BMC Genomics
Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms
Laurence O Whiteley5  Bruce L Homer4  Shawn P O’Neil4  Joanna Wood1  Ahmed M Shoieb3  Yizheng Li2  Mark M Gosink3  Sachin Mathur2  Rounak Nassirpour4 
[1]Quintiles Drug Research Unit at Guy’s Hospital, 6 Newcomen St, London SE1 1YR, UK
[2]Business Technology, Pfizer Research and Development, Burtt Rd, Andover, MA 01810, USA
[3]Drug Safety, Pfizer Research and Development, MS 8274 E. Point Road, Groton, CT 06340, USA
[4]Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810, USA
[5]200 Cambridge Park, Cambridge, MA 01810, USA
关键词: Kidney injury;    Gentamicin;    miRNA;    Urine;    qRT-PCR;    TruSeq;    Small RNA;    NGS;    Next-generation sequencing;   
Others  :  1216577
DOI  :  10.1186/1471-2164-15-485
 received in 2013-12-01, accepted in 2014-06-09,  发布年份 2014
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate protein levels post-transcriptionally. miRNAs play important regulatory roles in many cellular processes and have been implicated in several diseases. Recent studies have reported significant levels of miRNAs in a variety of body fluids, raising the possibility that miRNAs could serve as useful biomarkers. Next-generation sequencing (NGS) is increasingly employed in biomedical investigations. Although concordance between this platform and qRT-PCR based assays has been reported in high quality specimens, information is lacking on comparisons in biofluids especially urine. Here we describe the changes in miRNA expression patterns in a rodent model of renal tubular injury (gentamicin). Our aim is to compare RNA sequencing and qPCR based miRNA profiling in urine specimen from control and rats with confirmed tubular injury.

Results

Our preliminary examination of the concordance between miRNA-seq and qRT-PCR in urine specimen suggests minimal agreement between platforms probably due to the differences in sensitivity. Our results suggest that although miRNA-seq has superior specificity, it may not detect low abundant miRNAs in urine samples. Specifically, miRNA-seq did not detect some sequences which were identified by qRT-PCR. On the other hand, the qRT-PCR analysis was not able to detect the miRNA isoforms, which made up the majority of miRNA changes detected by NGS.

Conclusions

To our knowledge, this is the first time that miRNA profiling platforms including NGS have been compared in urine specimen. miRNAs identified by both platforms, let-7d, miR-203, and miR-320, may potentially serve as promising novel urinary biomarkers for drug induced renal tubular epithelial injury.

【 授权许可】

   
2014 Nassirpour et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701084315424.pdf 2103KB PDF download
Figure 5. 110KB Image download
Figure 4. 68KB Image download
Figure 3. 76KB Image download
Figure 2. 60KB Image download
Figure 1. 111KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Vaidya VS, Ferguson MA, Bonventre JV: Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol 2008, 48:463-493.
  • [2]Vaidya VS, Waikar SS, Ferguson MA, Collings FB, Sunderland K, Gioules C, Bradwin G, Matsouaka R, Betensky RA, Curhan GC, Bonventre JV: Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Translat Sci 2008, 1(3):200-208.
  • [3]Sasaki D, Yamada A, Umeno H, Kurihara H, Nakatsuji S, Fujihira S, Tsubota K, Ono M, Moriguch A, Watanabe K, Seki J: Comparison of the course of biomarker changes and kidney injury in a rat model of drug-induced acute kidney injury. Biomarkers 2011, 16(7):553-566.
  • [4]Khella HWZ, Bakhet M, Lichner Z, Romaschin AD, Jewett MAS, Yousef GM: MicroRNAs in kidney disease: an emerging understanding. Am J Kidney Dis 2013, 61(5):798-808.
  • [5]Saal S, Harvey SJ: MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hyperten 2009, 18(4):317-323.
  • [6]Akkina S, Becker BN: MicroRNAs in kidney function and disease. Translat Res 2011, 157(4):236-240.
  • [7]Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JYZ, Gleadle JM: Circulating microRNA expression is reduced in chronic kidney disease. Nephrol Dialysis Transplant 2011, 26(11):3794-3802.
  • [8]White NM, Bao TT, Grigull J: miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol 2011, 186:1077-1083.
  • [9]Lorenzen JM, Thum T: Circulating and Urinary microRNAs in Kidney Disease. Clin J Am Soc Nephrol 2012, 7(9):1528-1533.
  • [10]Kasinath BS, Feliers D: The complex world of kidney microRNAs. Kidney Int 2011, 80:334-337.
  • [11]White NM, Yousef GM: MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med 2010, 8:65.
  • [12]Yi Z, Fu Y, Zhao S: Differential expression of miRNA patterns in renal cell carcinoma and nontumorous tissues. J Cancer Res Clin Oncol 2010, 136:855-862.
  • [13]Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M: Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes. Circulation Research 2010, 107(6):810-817.
  • [14]Pandey P, Qin S, Ho J: Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst Biol 2011, 5:56.
  • [15]Redova M, Svoboda M, Slaby O: MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Comm 2011, 405(2):153-156.
  • [16]Heggermont WA, Heymans S: MicroRNAs Are Involved in End-Organ Damage During Hypertension. Hypertension 2012, 60(5):1088-1093.
  • [17]Alvarez ML, DiStefano JK: The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract 2013, 99(1):1-11.
  • [18]Meng F, Hackenberg M, Li Z, Yan J, Chen T: Discovery of Novel MicroRNAs in Rat Kidney Using Next Generation Sequencing and Microarray Validation. PLoS One 2012, 7(3):e34394.
  • [19]Wu Q, Wang C, Lu Z, Guo L, Ge Q: Analysis of serum genome-wide microRNAs for breast cancer detection. Clinica Chimica Acta 2012, 413(13–14):1058-1065.
  • [20]Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, Tembe W, Kim S, Metpally R, Van Keuren-Jensen K: Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 2013, 19(5):712-722.
  • [21]Tam S, de Borja R, Tsao M-S, McPherson JD: Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Invest 2014, 94(1):350.
  • [22]Llorens F, Hummel M, Pantano L, Pastor X, Vivancos A, Castillo E, Mattlin H, Ferrer A, Ingham M, Noguera M, Kofler R, Dohm J, Pluvinet R, Bayes M, Himmelbauer H, del Rio J, Marti E, Sumoy L: Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor. BMC Genomics 2013, 14(1):371.
  • [23]Kolbert CP, Feddersen RM, Rakhshan F, Grill DE, Simon G, Middha S, Jang JS, Simon V, Schultz DA, Zschunke M, Lingle W, Carr JM, Thompson EA, Oberg AL, Eckloff BW, Wieben ED, Li P, Yang P, Jen J: Multi-Platform Analysis of MicroRNA Expression Measurements in RNA from Fresh Frozen and FFPE Tissues. PLoS One 2013, 8(1):e52517.
  • [24]Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C: Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 2010, 16(5):991-1006.
  • [25]Sieber M, Hoffmann D, Adler M: Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol Sci 2009, 109:336-349.
  • [26]Zhou Y, Vaidya VS, Brown RP, Zhang J, Rosenzweig BA, Thompson KL, Miller TJ, Bonventre JV, Goering PL: Comparison of Kidney Injury Molecule-1 and Other Nephrotoxicity Biomarkers in Urine and Kidney Following Acute Exposure to Gentamicin, Mercury, and Chromium. Toxicol Sci 2008, 101(1):159-170.
  • [27]Hottendorf GH, Barnett D, Gordon LL, Christensen EF, Madissoo H: Nonparallel nephrotoxicity dose–response curves of aminoglycosides. Antimicrobial Agents and Chemotherapy 1981, 19(6):1024-1028.
  • [28]Saikumar J, Hoffmann D, Kim T-M, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS, Vaidya VS: Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury. Toxicological Sciences 2012, 129(2):256-267.
  • [29]Warnock DG, Peck CC: A roadmap for biomarker qualification. Nat Biotech 2010, 28(5):444-445.
  • [30]Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF: Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 2013. doi: 10.3402/jev.v2i0.19671
  • [31]Garmire LX, Subramaniam S: Evaluation of normalization methods in mammalian microRNA-Seq data. RNA 2012, 18(6):1279-1288.
  • [32]Zhou X, Oshlack A, Robinson MD: miRNA-Seq normalization comparisons need improvement. RNA 2013, 19(6):733-734.
  • [33]Sue YM, Cheng CF, Chang CC: Antioxidation and anti-inflammation by haem oxygenase-1 contribute to protection by tetramethylpyrazine against gentamicin-induced apoptosis in murine renal tubular cells. Nephrol Dial Transplant 2009, 24:769-777.
  • [34]Walker PD, Shah SV: Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest 1988, 81:334-341.
  • [35]Walker PD, Barri Y, Shah SV: Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail 1999, 21(3–4):433-442.
  • [36]Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ: New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 2011, 79(1):33-45.
  • [37]Houghton DC, Hartnett M, Campbell-Boswell M, Porter G, Bennett W: A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am J Pathol 1976, 82(3):589-612.
  • [38]Mingeot-Leclercq MP, Brasseur R, Schanck A: Molecular parameters involved in aminoglycoside nephrotoxicity. J Toxicol Environ Health 1995, 44:263-300.
  • [39]Mingeot-Leclercq M-P, Tulkens PM: Aminoglycosides: Nephrotoxicity. Antimicrob Agents Chemother 1999, 43(5):1003-1012.
  • [40]Mestdagh P, Feys T, Bernard N, Guenther S, Chen C, Speleman F, Vandesompele J: High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res 2008, 36(21):e143.
  • [41]Chen Y, Gelfond J, McManus L, Shireman P: Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genomics 2009, 10(1):1-10.
  • [42]Karim S, Helio P, HA E, Ana K, Sam G-J, Vincent M, Tamas D: Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 2012, 3(1):4.
  • [43]Weber JA, Baxter DH, Zhang S, Huang DY, How Huang K, Jen Lee M, Galas DJ, Wang K: The MicroRNA Spectrum in 12 Body Fluids. Clin Chem 2010, 56(11):1733-1741.
  • [44]Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW: Acute Kidney Injury, Mortality, Length of Stay, and Costs in Hospitalized Patients. J Am Soc Nephrol 2005, 16(11):3365-3370.
  • [45]Langmead B, Trapnell C, Pop M, Salzberg S: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25.
  • [46]Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K: Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 2010, 16(11):2170-2180.
  • [47]Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR: Rfam: an RNA family database. Nucleic Acids Res 2003, 31(1):439-441.
  • [48]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
  • [49]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [50]Soneson C, Delorenzi M: A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013, 14(1):91.
  文献评价指标  
  下载次数:11次 浏览次数:26次