期刊论文详细信息
BMC Research Notes
A simple breathing circuit allowing precise control of inspiratory gases for experimental respiratory manipulations
Richard D Hoge1  Isabelle Lajoie1  Felipe B Tancredi1 
[1] Centre de recherche de l’institut universitaire de gériatrie de Montréal, 4545, Queen Mary, Montreal, QC H3W 1W5, Canada
关键词: Breathing circuit;    Hyperoxia;    Hypercapnia;    Functional MRI;    Respiratory manipulation;   
Others  :  1133751
DOI  :  10.1186/1756-0500-7-235
 received in 2013-10-22, accepted in 2014-04-09,  发布年份 2014
【 摘 要 】

Background

Respiratory manipulations modulating blood flow and oxygenation levels have become an important component of modern functional MRI applications. Manipulations often consist of temporarily switching inspired fractions of CO2 and O2; and have typically been performed using simple oxygen masks intended for applications in respiratory therapy. However, precise control of inspired gas composition is difficult using this type of mask due to entrainment of room air and resultant dilution of inspired gases. We aimed at developing a gas delivery apparatus allowing improved control over the fractional concentration of inspired gases, to be used in brain fMRI studies.

Findings

The breathing circuit we have conceived allowed well controlled step changes in FiO2 and FiCO2, at moderate flow rates achievable on standard clinical flow regulators. In a two run test inside the scanner we demonstrate that tightly controlled simple gas switching manipulations can afford good intra-subject reproducibility of induced hyperoxia/hypercapnia responses. Although our approach requires a non-vented mask fitting closely to the subject’s face, the circuit ensures a continuous supply of breathable air even if the supply of medical gases is interrupted, and is easily removable in case of an emergency. The apparatus we propose is also compact and MRI compatible, allowing subject placement in confined spaces such as an MRI scanner for brain examinations.

Conclusions

We have reported a new approach for the controlled administration of medical gases, and describe an implementation of the breathing circuit that is MRI compatible and uses commercially available parts. The resultant apparatus allows simple, safe and precise manipulations of FiO2 and FiCO2.

【 授权许可】

   
2014 Tancredi et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 4. 44KB Image download
Figure 3. 57KB Image download
Figure 2. 57KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Mandell DM, Han JS, Poublanc J, Crawley AP, Stainsby JA, Fisher JA, Mikulis DJ: Mapping cerebrovascular reactivity using blood oxygen level-dependent MRI in patients with arterial steno-occlusive disease: comparison with arterial spin labeling MRI. Stroke 2008, 39:2021-2028.
  • [2]Gauthier CJ, Madjar C, Desjardins-Crépeau L, Bellec P, Bherer L, Hoge RD: Age dependence of hemodynamic response characteristics in human functional magnetic resonance imaging. Neurobiol Aging 2013, 34:1469-1485.
  • [3]Ances BM, Liang CL, Leontiev O, Perthen JE, Fleisher AS, Lansing AE, Buxton RB: Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Hum Brain Mapp 2009, 30:1120-1132.
  • [4]Spano VR, Mandell DM, Poublanc J, Sam K, Battisti-Charbonney A, Pucci O, Han JS, Crawley AP, Fisher JA, Mikulis DJ: CO2 blood oxygen level-dependent MR mapping of cerebrovascular reserve in a clinical population: safety, tolerability, and technical feasibility. Radiology 2013, 266:592-598.
  • [5]Gauthier CJ, Hoge RD: Magnetic resonance imaging of resting OEF and CMRO(2) using a generalized calibration model for hypercapnia and hyperoxia. NeuroImage 2012, 60:1212-1225.
  • [6]Yezhuvath US, Lewis-Amezcua K, Varghese R, Xiao G, Lu H: On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed 2009, 22:779-786.
  • [7]Bulte DP, Kelly M, Germuska M, Xie J, Chappell MA, Okell TW, Bright MG, Jezzard P: Quantitative measurement of cerebral physiology using respiratory-calibrated MRI. NeuroImage 2012, 60:582-591.
  • [8]Mark C, Slessarev M, Ito S, Han J, Fisher J, Pike G: Precise control of end‒tidal carbon dioxide and oxygen improves BOLD and ASL cerebrovascular reactivity measures. Magn Reson Med 2010, 64:749-756.
  • [9]Winter JD, Fierstra J, Dorner S, Fisher JA, St Lawrence KS, Kassner A: Feasibility and precision of cerebral blood flow and cerebrovascular reactivity MRI measurements using a computer-controlled gas delivery system in an anesthetised juvenile animal model. J Magn Reson Imaging 2010, 32:1068-1075.
  • [10]Wise RG, Pattinson KTS, Bulte DP, Chiarelli PA, Mayhew SD, Balanos GM, Connor O, Connor DF, Pragnell TR, Robbins PA, Tracey I, Jezzard P: Dynamic forcing of end-tidal carbon dioxide and oxygen applied to functional magnetic resonance imaging. J Cereb Blood Flow Metab 2007, 27:1521-1532.
  • [11]Banzett RB, Garcia RT, Moosavi SH: Simple contrivance “clamps” end-tidal PCO(2) and PO(2) despite rapid changes in ventilation. J Appl Physiol 2000, 88:1597-1600.
  • [12]Slessarev M, Han JS, Mardimae A, Prisman E, Preiss D, Volgyesi G, Ansel C, Duffin J, Fisher JA: Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol 2007, 581:1207-1219.
  • [13]Robbins PA, Swanson GD, Howson MG: A prediction-correction scheme for forcing alveolar gases along certain time courses. J Appl Physiol 1982, 52:1353-1357.
  • [14]Mutch WAC, Mandell DM, Fisher JA, Mikulis DJ, Crawley AP, Pucci O, Duffin J: Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide. PLoS One 2012, 7:e47443.
  • [15]Blockley NP, Driver ID, Francis ST, Fisher JA, Gowland PA: An improved method for acquiring cerebrovascular reactivity maps. Magn Reson Med 2011, 65:1278-1286.
  • [16]Driver I, Blockley N, Fisher J, Francis S, Gowland P: The change in cerebrovascular reactivity between 3 T and 7 T measured using graded hypercapnia. NeuroImage 2010, 51:274-279.
  • [17]Tancredi FB, Hoge RD: Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J Cereb Blood Flow Metab 2013, 33:1066-1074.
  • [18]Boumphrey SM, Morris EAJ, Kinsella SM: 100% inspired oxygen from a hudson mask-a realistic goal? Resuscitation 2003, 57:69-72.
  • [19]Bulte DP, Drescher K, Jezzard P: Comparison of hypercapnia-based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn Reson Med 2009, 61:391-398.
  文献评价指标  
  下载次数:46次 浏览次数:13次