期刊论文详细信息
BMC Evolutionary Biology
The explosive radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia
Isabel Sanmartín4  Arnoldo Santos-Guerra1  Joan Vallès2  Jaume Pellicer5  Teresa Garnatje3  Daniel Vitales2 
[1] Jardín de Aclimatación de la Orotava, 38400 Tenerife, Spain;Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain;Institut Botànic de Barcelona (IBB-CSIC-ICUB), 08038 Barcelona, Catalonia, Spain;Real Jardín Botánico (RJB-CSIC), 28014 Madrid, Spain;Jodrell Laboratory, Royal Botanic Gardens Kew, TW9 3DS Richmond, UK
关键词: Phylogeography;    Mediterranean Basin;    Island radiation;    Diversification;    Canary Islands;    Allopatric speciation;   
Others  :  855465
DOI  :  10.1186/1471-2148-14-118
 received in 2014-01-28, accepted in 2014-05-21,  发布年份 2014
PDF
【 摘 要 】

Background

Considered a biodiversity hotspot, the Canary Islands have been the key subjects of numerous evolutionary studies concerning a large variety of organisms. The genus Cheirolophus (Asteraceae) represents one of the largest plant radiations in the Canarian archipelago. In contrast, only a few species occur in the Mediterranean region, the putative ancestral area of the genus. Here, our main aim was to reconstruct the phylogenetic and biogeographic history of Cheirolophus with special focus on explaining the origin of the large Canarian radiation.

Results

We found significant incongruence in phylogenetic relationships between nuclear and plastid markers. Each dataset provided resolution at different levels in Cheirolophus: the nuclear markers resolved the backbone of the phylogeny while the plastid data provided better resolution within the Canarian clade. The origin of Cheirolophus was dated in the Mid-Late Miocene, followed by rapid diversification into the three main Mediterranean lineages and the Macaronesian clade. A decrease in diversification rates was inferred at the end of the Miocene, with a new increase in the Late Pliocene concurrent with the onset of the Mediterranean climate. Diversification within the Macaronesian clade started in the Early-Mid Pleistocene, with unusually high speciation rates giving rise to the extant insular diversity.

Conclusions

Climate-driven diversification likely explains the early evolutionary history of Cheirolophus in the Mediterranean region. It appears that the exceptionally high diversification rate in the Canarian clade was mainly driven by allopatric speciation (including intra- and interisland diversification). Several intrinsic (e.g. breeding system, polyploid origin, seed dispersal syndrome) and extrinsic (e.g. fragmented landscape, isolated habitats, climatic and geological changes) factors probably contributed to the progressive differentiation of populations resulting in numerous microendemisms. Finally, hybridization events and emerging ecological adaptation may have also reinforced the diversification process.

【 授权许可】

   
2014 Vitales et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722034029884.pdf 2041KB PDF download
86KB Image download
149KB Image download
76KB Image download
72KB Image download
83KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A: Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. Syst Bot 2002, 27:271-288.
  • [2]Carine MA, Russell SJ, Santos-Guerra A, Francisco-Ortega J: Relationships of the Macaronesian and Mediterranean Floras: molecular evidence for multiple colonizations into Macaronesia and back-colonization of the continent in Convolvulus (Convolvulaceae). Am J Bot 2004, 91:1070-1085.
  • [3]Kim S-C, McGowen MR, Lubinsky P, Barber JC, Mort ME, Santos-Guerra A: Timing and tempo of early and successive adaptive radiations in Macaronesia. PLoS One 2008, 3:e2139.
  • [4]García-Maroto F, Mañas-Fernández A, Garrido-Cárdenas JA, Alonso DL, Guil-Guerrero JL, Guzmán B, Vargas P: Delta 6-desaturase sequence evidence for explosive Pliocene radiations within the adaptive radiation of Macaronesian Echium (Boraginaceae). Mol Phylogenet Evol 2009, 52:563-574.
  • [5]Juan I, Emerson B, Orom I, Hewitt G: Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. Trends Ecol Evol 2000, 15:104-109.
  • [6]Fernández-Palacios JM: The Canaries: an important biogeographical meeting place. J Biogeogr 2008, 35:379-387.
  • [7]Sanmartín I, van der Mark P, Ronquist F: Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. J Biogeogr 2008, 35:428-449.
  • [8]Silvertown J, Francisco-Ortega J, Carine M: The monophyly of island radiations: an evaluation of niche pre-emption and some alternative explanations. J Ecol 2005, 93:653-657.
  • [9]Carine MA, Humphries CJ, Guma IR, Reyes-Betancort JA, Santos-Guerra A: Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. J Biogeogr 2009, 36:593-611.
  • [10]Guzmán B, Vargas P: Unexpected synchronous differentiation in Mediterranean and Canarian Cistus (Cistaceae). Perspect Plant Ecol Evol Syst 2010, 12:163-174.
  • [11]Fernández-Mazuecos M, Vargas P: Genetically depauperate in the continent but rich in oceanic islands: Cistus monspeliensis (Cistaceae) in the Canary Islands. PLoS One 2011, 6:e17172.
  • [12]Antonelli A, Sanmartín I: Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst Biol 2011, 60:596-615.
  • [13]Whittaker RJ, Triantis KA, Ladle RJ: A general dynamic theory of oceanic island biogeography. J Biogeogr 2008, 35:977-994.
  • [14]Bramwell D, Bramwell Z: Wild Flowers of the Canary Islands. 2nd edition. Madrid: Editorial Rueda; 2001.
  • [15]Dostál J: Cheirolophus. In Flora Europaea. Edited by Tutin TG, Heywwod VH, Burges NA, Moore DM, Valentine DH, Waltets SM. Cambridge: Cambridge University Press; 1976:249-250.
  • [16]Wagenitz G: Pollenmorphologie und Systemtik in der Gattung Centaurea L. s. l. Flora 1955, 142:213-279.
  • [17]Crawford DJ, Lowrey TK, Anderson GJ, Bernardello G, Santos-Guerra A, Stuessy TF: Genetic diversity in Asteraceae endemic to oceanic islands: Baker’s Law and polyploidy. In Syst Evol Biogeogr Compos. Edited by Funk VA, Susanna A, Stuessy TF, Bayer RJ. Vienna: International Association for Plant Taxonomy; 2009:139-151.
  • [18]IUCN Red List of Threatened Species Version 2012.2 http://www.iucnredlist.org webcite
  • [19]Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S: Atlas y Libro Rojo de La Flora Vascular Amenazada de España. Adenda 2010. Madrid: Dirección General de Medio Natural y Política Forestal y Sociedad Española de Biología de la Conservación de Plantas; 2010.
  • [20]Garnatje T, Susanna A, Messeguer R: Isozyme studies in the genus Cheirolophus (Asteraceae: Cardueae-Centaureinae) in the Iberian Peninsula, North Africa and the Canary Islands. Plant Syst Evol 1998, 213:57-70.
  • [21]Susanna A, Garnatje T, Garcia-Jacas N: Molecular phylogeny of Cheirolophus (Asteraceae: Cardueae-Centaureinae) based on ITS sequences of nuclear ribosomal DNA. Plant Syst Evol 1999, 214:147-160.
  • [22]Garnatje T, Garcia S, Canela MÁ: Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Syst Evol 2007, 264:117-134.
  • [23]Barres L, Sanmartín I, Anderson CL, Susanna A, Buerki S, Galvany-Casals M, Vilatersana R: Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). Am J Bot 2013, 100:867-882.
  • [24]Doyle J, Doyle JL: Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 1987, 19:11-15.
  • [25]Soltis DE, Soltis PS, Collier TG, Edgerton ML: Chloroplast DNA variation within and among genera of the Heuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. Am J Bot 1991, 78:1091-1112.
  • [26]Cullins KW: Design and testing of a plant-specific primer for ecological and evolutionary studies. Mol Ecol 1992, 1:233-240.
  • [27]Shaw J, Lickey EB, Schilling EE, Small RL: Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 2007, 94:275-288.
  • [28]Pellicer J, Vallès J, Korobkov AA, Garnatje T: Phylogenetic relationships of Artemisia subg. Dracunculus (Asteraceae) based on ribosomal and chloroplast DNA sequences. Taxon 2011, 60:691-704.
  • [29]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999, 41:95-98.
  • [30]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
  • [31]Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates; 2003.
  • [32]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [33]Ronquist F, Huelsenbeck JP, van der Mark P: MrBayes 3.1 Manual. Distributed with the Program by the Authors 2005.
  • [34]Rambaut A, Drummond AJ: FigTree v 1. 3.1. 2009. Available from http://tree.bio.ed.ac.uk/software/figtree webcite 2009
  • [35]Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B, Kadereit JW, Watson LE: Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Am J Bot 2010, 97:856-873.
  • [36]Jones KE, Reyes-Betancort JA, Hiscock SJ, Carine MA: Allopatric diversification, multiple habitat shifts, and hybridization in the evolution of Pericallis (Asteraceae), a Macaronesian endemic genus. Am J Bot 2014, 101:637-651.
  • [37]Krak K, Caklová P, Chrtek J, Fehrer J: Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation (Hieracium, Asteraceae). Heredity 2013, 110:138-151.
  • [38]Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. Mol Biol Evol 2010, 27:570-580.
  • [39]Seehausen O: Hybridization and adaptive radiation. Trends Ecol Evol 2004, 19:198-207.
  • [40]Koblmüller S, Egger B, Sturmbauer C, Sefc KM: Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol Phylogenet Evol 2010, 55:318-334.
  • [41]Rambaut A, Drummond AJ: Tracer. Available from http://tree.bio.ed.ac.uk/software/tracer/ webcite 2007
  • [42]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [43]Drummond AJ, Suchard MA, Xie D, Rambaut A: Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012, 29:1969-1973.
  • [44]Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV: Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 2012, 29:2157-2167.
  • [45]Gernhard T: The conditioned reconstructed process. J Theor Biol 2008, 253:769-778.
  • [46]Ho SYW, Phillips MJ: Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 2009, 58:367-380.
  • [47]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20:289-290.
  • [48]Pybus OG, Harvey PH: Testing macro-evolutionary models using incomplete phylogenies. Proc Biol Sci 2000, 267:2267-2272.
  • [49]Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigating evolutionary radiations. Bioinformatics 2008, 24:129-131.
  • [50]Stadler T: Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A 2011, 108:6187-6192.
  • [51]Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmond LJ: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci USA 2009, 106:13410-13414.
  • [52]Magallón S, Sanderson MJ: Absolute diversification rates in angiosperm clades. Evolution 2001, 55:1762-1780.
  • [53]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
  • [54]Lemey P, Rambaut A, Drummond AJ, Suchard MA: Bayesian phylogeography finds its roots. PLoS Comput Biol 2009, 5:e1000520.
  • [55]Ronquist F, Sanmartín I: Phylogenetic methods in biogeography. Annu Rev Ecol Evol Syst 2011, 42:441-464.
  • [56]Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science 2008, 322:86-89.
  • [57]Álvarez I, Wendel JF: Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 2003, 29:417-434.
  • [58]Nieto Feliner G, Rosselló JA: Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 2007, 44:911-919.
  • [59]Lynch M, Koskella B, Schaack S: Mutation pressure and the evolution of organelle genomic architecture. Science 2006, 311:1727-1730.
  • [60]Goodson BE, Santos-Guerra A, Jansen RK: Molecular systematics of Descurainia (Brassicaceae) in the Canary Islands: biogeographic and taxonomic implications. Taxon 2006, 55:671-682.
  • [61]Pillon Y, Johansen J, Sakishima T, Chamala S, Barbazuk WB, Roalson EH, Stacy EA: Potential use of low-copy nuclear genes in DNA barcoding: a comparison with plastid genes in two Hawaiian plant radiations. BMC Evol Biol 2013, 13:35. BioMed Central Full Text
  • [62]Francisco-Ortega J, Jansen RK, Santos‒Guerra A: Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. Proc Natl Acad Sci U S A 1996, 93:4085-4090.
  • [63]Barber JC, Finch CC, Francisco-Ortega J, Santos-Guerra A, Jansen RK: Hybridization in Macaronesian Sideritis (Lamiaceae): evidence from incongruence of multiple independent nuclear and chloroplast sequence datasets. Taxon 2007, 56:74-88.
  • [64]Fernández-Palacios JM, De Nascimento L, Otto R, Delgado JD, García-del-Rey E, Arévalo JR, Whittaker RJ: A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. J Biogeogr 2011, 38:226-246.
  • [65]Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova I, Zhang Z: Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr Palaeoclimatol Palaeoecol 2006, 238:219-227.
  • [66]Thompson JD: Plant Evolution in the Mediterranean. Oxford: Oxford University Press; 2005.
  • [67]Médail F, Diadema K: Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 2009, 36:1333-1345.
  • [68]Fiz-Palacios O, Valcárcel V: From Messinian crisis to Mediterranean climate: a temporal gap of diversification recovered from multiple plant phylogenies. Perspect Plant Ecol Evol Syst 2013, 15:130-137.
  • [69]Knope ML, Morden CW, Funk VA, Fukami T: Area and the rapid radiation of Hawaiian Bidens (Asteraceae). J Biogeogr 2012, 39:1206-1216.
  • [70]Valente LM, Savolainen V, Vargas P: Unparalleled rates of species diversification in Europe. Proc Biol Sci 2010, 277:1489-1496.
  • [71]Hughes C, Eastwood R: Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 2006, 103:10334-10339.
  • [72]Nee S: Models in macroevolution. Annu Rev Ecol Evol Syst 2006, 37:1-17.
  • [73]Okada M, Whitkus R, Lowrey TK: Genetics of adaptive radiation in Hawaiian and Cook Islands species of Tetramolopium (Asteraceae; Astereae). I. Nuclear RFLP marker diversity. Am J Bot 1997, 84:1236-1246.
  • [74]Whitkus R, Doan H, Lowrey TK: Genetics of adaptive radiation in Hawaiian species of Tetramolopium (Asteraceae). III. Evolutionary genetics of sex expression. Heredity 2000, 85:37-42.
  • [75]Allan GJ, Francisco-Ortega J, Santos-Guerra A, Boerner E, Zimmer EA: Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae). Mol Phylogenet Evol 2004, 32:123-138.
  • [76]Trusty JL, Olmstead RG, Santos-Guerra A, Sá-Fontinha S, Francisco-Ortega J: Molecular phylogenetics of the Macaronesian-endemic genus Bystropogon (Lamiaceae): palaeo-islands, ecological shifts and interisland colonizations. Mol Ecol 2005, 14:1177-1789.
  • [77]Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ: Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 2004, 222:599-614.
  • [78]Carracedo JC, Badiola ER, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A: Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 2007, 119:1027-1051.
  • [79]Meco J, Ramos AJG, Ballester J, Petit-Maire N, Guillou H, Carracedo JC, Lomoschitz A: Climatic changes over the last 5,000,000 years as recorded in the Canary Islands. Episodes 2003, 23:133-134.
  • [80]Carlquist S: Island Biology. New York: Columbia University Press; 1974.
  • [81]Whittaker RJ, Fernández-Palacios JM: Island Biogeography: Ecology, Evolution and Conservation. Oxford: Oxford Uni; 2007.
  • [82]Sventenius ER: Las Centaureas de la sección Cheirolophus en las islas Macaronésicas. Anu Estud Atl 1960, 6:219-236.
  • [83]Nathan R: Long-distance dispersal of plants. Science 2006, 313:786-788.
  • [84]Garnatje T, Pérez-Collazos E, Pellicer J, Catalán P: Balearic insular isolation and large continental spread framed the phylogeography of the western Mediterranean Cheirolophus intybaceus s.l. (Asteraceae). Plant Biol 2013, 15:165-175.
  • [85]Baker HG: Self-compatibility and establishment after “long-distance” dispersal. Evolution 1955, 9:347-349.
  • [86]Index to chromosome numbers in the Asteraceae [http://www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e webcite]
  • [87]Vallès J, Pellicer J, Sánchez-Jiménez I, Hidalgo O, Vitales D, Garcia S, Martín J, Garnatje T: Polyploidy and other changes at chromosomal level and in genome size : its role in systematics and evolution exemplified by some genera of Anthemideae and Cardueae (Asteraceae). Taxon 2012, 61:841-851.
  • [88]Francisco-Ortega J, Crawford DJ, Santos-Guerra A, Jansen RK: Origin and evolution of Argyranthemum (Asteraceae: Anthemideae) in Macaronesia. In Mol Evol Adapt Radiat. Edited by Givnish TJ, Sytsma KJ. Cambridge: Cambridge University Press; 2000:407-431.
  • [89]Baldwin BG, Sanderson MJ: Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 1998, 95:9402-9406.
  • [90]Schluter D: The Ecology of Adaptive Radiation. Oxford: Oxford University Press; 2000.
  • [91]Vitales D, Garnatje T, Pellicer J, Vallès J, Santos-Guerra A, Sanmartín I: The Explosive Radiation of Cheirolophus (Asteraceae, Cardueae) in Macaronesia. TreeBase 2014. http://treebase.org/treebase-web/search/study/summary.html?id=15742 webcite
  文献评价指标  
  下载次数:0次 浏览次数:19次