期刊论文详细信息
BMC Genomics
Comparative genomics of nucleotide metabolism: a tour to the past of the three cellular domains of life
Ernesto Perez-Rueda2  Lorenzo Segovia1  Dagoberto Armenta-Medina1 
[1] Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM Av. Universidad 2001, Cuernavaca, Morelos CP 62210, México;Present address: Unidad Multidisciplinaria de Docencia e Investigación, Sisal Facultad de Ciencias, UNAM, Sisal, Yucatán, México
关键词: LCA;    Enzymes;    Sequence profiles;    Evolution;    Comparative genomics;    Nucleotide metabolism;   
Others  :  1139574
DOI  :  10.1186/1471-2164-15-800
 received in 2014-03-25, accepted in 2014-09-15,  发布年份 2014
PDF
【 摘 要 】

Background

Nucleotide metabolism is central to all biological systems, due to their essential role in genetic information and energy transfer, which in turn suggests its possible presence in the last common ancestor (LCA) of Bacteria, Archaea and Eukarya. In this context, elucidation of the contribution of the origin and diversification of de novo and salvage pathways of nucleotide metabolism will allow us to understand the links between the enzymatic steps associated with the LCA and the emergence of the first metabolic pathways.

Results

In this work, the taxonomical distribution of the enzymes associated with nucleotide metabolism was evaluated in 1,606 complete genomes. 151 sequence profiles associated with 120 enzymatic reactions were used. The evaluation was based on profile comparisons, using RPS-Blast. Organisms were clustered based on their taxonomical classifications, in order to obtain a normalized measure of the taxonomical distribution of enzymes according to the average of presence/absence of enzymes per genus, which in turn was used for the second step, to calculate the average presence/absence of enzymes per Clade.

Conclusion

From these analyses, it was suggested that divergence at the enzymatic level correlates with environmental changes and related modifications of the cell wall and membranes that took place during cell evolution. Specifically, the divergence of the 5-(carboxyamino) imidazole ribonucleotide mutase to phosphoribosylaminoimidazole carboxylase could be related to the emergence of multicellularity in eukaryotic cells. In addition, segments of salvage and de novo pathways were probably complementary in the LCA to the synthesis of purines and pyrimidines. We also suggest that a large portion of the pathway to inosine 5’-monophosphate (IMP) in purines could have been involved in thiamine synthesis or its derivatives in early stages of cellular evolution, correlating with the fact that these molecules may have played an active role in the protein-RNA world. The analysis presented here provides general observations concerning the adaptation of the enzymatic steps in the early stages of the emergence of life and the LCA.

【 授权许可】

   
2014 Armenta-Medina et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150322011255684.pdf 1928KB PDF download
Figure 7. 62KB Image download
Figure 6. 40KB Image download
Figure 5. 75KB Image download
Figure 4. 37KB Image download
Figure 3. 71KB Image download
Figure 2. 67KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Hernandez-Montes G, Diaz-Mejia JJ, Perez-Rueda E, Segovia L: The hidden universal distribution of amino acid biosynthetic networks: a genomic perspective on their origins and evolution. Genome Biol 2008, 9(6):R95. BioMed Central Full Text
  • [2]Wixon J, Kell D: The Kyoto encyclopedia of genes and genomes–KEGG. Yeast 2000, 17(1):48-55.
  • [3]Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004, 5(2):101-113.
  • [4]Diaz-Mejia JJ, Perez-Rueda E, Segovia L: A network perspective on the evolution of metabolism by gene duplication. Genome Biol 2007, 8(2):R26. BioMed Central Full Text
  • [5]Horowitz NH: On the evolution of biochemical syntheses. Proc Natl Acad Sci U S A 1945, 31(6):153.
  • [6]Jensen RA: Enzyme recruitment in evolution of new function. Annu Rev Microbiol 1976, 30:409-425.
  • [7]Lopez de la Osa J, Bateman DA, Ho S, Gonzalez C, Chakrabartty A, Laurents DV: Getting specificity from simplicity in putative proteins from the prebiotic earth. Proc Natl Acad Sci U S A 2007, 104(38):14941-14946.
  • [8]Delaye L, Becerra A, Lazcano A: The last common ancestor: what’s in a name? Orig Life Evol Biosph 2005, 35(6):537-554.
  • [9]Brown AM, Hoopes SL, White RH, Sarisky CA: Purine biosynthesis in archaea: variations on a theme. Biol Direct 2011, 6:63. BioMed Central Full Text
  • [10]Becerra A, Lazcano A: The role of gene duplication in the evolution of purine nucleotide salvage pathways. Orig Life Evol Biosph 1998, 28(4–6):539-553.
  • [11]Caetano-Anolles G, Yafremava LS, Gee H, Caetano-Anolles D, Kim HS, Mittenthal JE: The origin and evolution of modern metabolism. Int J Biochem Cell Biol 2009, 41(2):285-297.
  • [12]Oro J, Yamrom T, Cortes S: The Prebiotic Synthesis of Imidazoles and Their Catalytic Role in the Synthesis of Oligonucleotides. Fed Proc 1983, 42(7):1926-1926.
  • [13]Basile B, Lazcano A, Oro J: Prebiotic syntheses of purines and pyrimidines. Adv Space Res 1984, 4(12):125-131.
  • [14]Meléndez-Hevia E, Waddell TG, Montero F: Optimization of metabolism: the evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J Theor Biol 1994, 166(2):201-220.
  • [15]Morowitz H, Peterson E, Chang S: The Synthesis of Glutamic-Acid in the Absence of Enzymes - Implications for Biogenesis. Orig Life Evol Biosph 1995, 25(4):395-399.
  • [16]Waddell TG, Eilders LL, Patel BP, Sims M: Prebiotic methylation and the evolution of methyl transfer reactions in living cells. Orig Life Evol Biosph 2000, 30(6):539-548.
  • [17]Peregrín-Alvarez JM, Sanford C, Parkinson J: The conservation and evolutionary modularity of metabolism. Genome Biol 2009, 10(6):R63. BioMed Central Full Text
  • [18]Fani R, Fondi M: Origin and evolution of metabolic pathways. Phys Life Rev 2009, 6(1):23-52.
  • [19]Kyrpides N, Overbeek R, Ouzounis C: Universal protein families and the functional content of the last universal common ancestor. J Mol Evol 1999, 49(4):413-423.
  • [20]Koonin EV: Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003, 1(2):127-136.
  • [21]Zrenner R, Stitt M, Sonnewald U, Boldt R: Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 2006, 57:805-836.
  • [22]Vantrump JE, Miller SL: Carbon-Monoxide on Primitive Earth. Earth Planet Sc Lett 1973, 20(1):145-150.
  • [23]Smirnov A, Schoonen MA: Evaluating experimental artifacts in hydrothermal prebiotic synthesis experiments. Orig Life Evol Biosph 2003, 33(2):117-127.
  • [24]Martin W, Russell MJ: On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond B Biol Sci 2007, 362(1486):1887-1925.
  • [25]Wallace KB, Starkov AA: Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 2000, 40:353-388.
  • [26]Haritos VS, Dojchinov G: Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates. Comp Biochem Physiol C Toxicol Pharmacol 2003, 136(2):135-143.
  • [27]Kappock TJ, Ealick SE, Stubbe J: Modular evolution of the purine biosynthetic pathway. Curr Opin Chem Biol 2000, 4(5):567-572.
  • [28]Zhang Y, Morar M, Ealick SE: Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 2008, 65(23):3699-3724.
  • [29]Tribunskikh IA, Alenin VV, Selivanov SI, Shavva AG, Inge-Vechtomov SG: Divergence of de novo biosynthesis of inosine-5’-triphosphate. Dokl Biochem Biophys 2005, 400:65-68.
  • [30]Dismukes G, Klimov V, Baranov S, Kozlov YN, DasGupta J, Tyryshkin A: The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci 2001, 98(5):2170-2175.
  • [31]Grotzinger JP, Kasting JF: New constraints on Precambrian ocean composition. J Geol 1993, 101(2):235-243.
  • [32]Meyer E, Kappock TJ, Osuji C, Stubbe J: Evidence for the direct transfer of the carboxylate of N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase. Biochemistry 1999, 38(10):3012-3018.
  • [33]Cusack NJ, Shaw G, Litchfield GJ: Purines, pyrimidines, and imidazoles. XXXVI. Carboxylation of some 5-aminoimidazoles and related compounds, including nucleosides and nucleotides, with potassium hydrogen carbonate in aqueous solution. J Chem Soc Perkin 1 1971, 8:1501-1507.
  • [34]Cordat E, Casey JR: Bicarbonate transport in cell physiology and disease. Biochem J 2009, 417:423-439.
  • [35]Kang YN, Tran A, White RH, Ealick SE: A novel function for the N-terminal nucleophile hydrolase fold demonstrated by the structure of an archaeal inosine monophosphate cyclohydrolase. Biochemistry 2007, 46(17):5050-5062.
  • [36]Grochowski LL, Censky K, Xu HM, White RH: A new class of adenylate kinase in methanogens is related to uridylate kinase. Arch Microbiol 2012, 194(2):141-145.
  • [37]Yan H, Tsai MD: Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. Adv Enzymol Relat Areas Mol Biol 1999, 73:103-134.
  • [38]Stolworthy TS, Black ME: The mouse guanylate kinase double mutant E72Q/D103N is a functional adenylate kinase. Protein Eng 2001, 14(11):903-909.
  • [39]Feng X, Yang RN, Zheng XF, Zhang FY: Identification of a novel nuclear-localized adenylate kinase 6 from Arabidopsis thaliana as an essential stem growth factor. Plant Physiol Biochem 2012, 61:180-186.
  • [40]Ren H, Wang L, Bennett M, Liang Y, Zheng X, Lu F, Li L, Nan J, Luo M, Eriksson S, Zhang C, Su XD: The crystal structure of human adenylate kinase 6: An adenylate kinase localized to the cell nucleus. Proc Natl Acad Sci U S A 2005, 102(2):303-308.
  • [41]Keegan LP, Leroy A, Sproul D, O’Connell MA: Adenosine deaminases acting on RNA (ADARs): RNA-editing enzymes. Genome Biol 2004, 5(2):209. BioMed Central Full Text
  • [42]Hitchings GH: The purine metablism of protozoa. Adv Enzyme Regul 1982, 20:375-386.
  • [43]Zubay G: To what extent do biochemical pathways mimic prebiotic pathways. Chemtracts Biochem Mol Biol 1993, 4:317-323.
  • [44]Frank RA, Leeper FJ, Luisi BF: Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol Life Sci 2007, 64(7–8):892-905.
  • [45]Lazcano A, Miller SL: On the origin of metabolic pathways. J Mol Evol 1999, 49(4):424-431.
  • [46]Groziak MP, Bhat B, Leonard NJ: Nonenzymatic synthesis of 5-aminoimidazole ribonucleoside and recognition of its facile rearrangement. Proc Natl Acad Sci U S A 1988, 85(19):7174-7176.
  • [47]Winkler W, Nahvi A, Breaker RR: Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002, 419(6910):952-956.
  • [48]Sakumi K, Abolhassani N, Behmanesh M, Iyama T, Tsuchimoto D, Nakabeppu Y: ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res 2010, 703(1):43-50.
  • [49]Glasemacher J, Bock AK, Schmid R, Schonheit P: Purification and properties of acetyl-CoA synthetase (ADP-forming), an archaeal enzyme of acetate formation and ATP synthesis, from the hyperthermophile Pyrococcus furiosus. Eur J Biochem 1997, 244(2):561-567.
  • [50]Krepl M, Otyepka M, Banas P, Sponer J: Effect of Guanine to Inosine Substitution on Stability of Canonical DNA and RNA Duplexes: Molecular Dynamics Thermodynamics Integration Study. J Phys Chem B 2013, 117(6):1872-1879.
  • [51]Rowland P, Norager S, Jensen KF, Larsen S: Structure of dihydroorotate dehydrogenase B: electron transfer between two flavin groups bridged by an iron-sulphur cluster. Structure 2000, 8(12):1227-1238.
  • [52]Takashima E, Inaoka DK, Osanai A, Nara T, Odaka M, Aoki T, Inaka K, Harada S, Kita K: Characterization of the dihydroorotate dehydrogenase as a soluble fumarate reductase in Trypanosoma cruzi. Mol Biochem Parasitol 2002, 122(2):189-200.
  • [53]Norager S, Jensen KF, Bjornberg O, Larsen S: E-coli dihydroorotate dehydrogenase reveals structural and functional distinctions between different classes of dihydroorotate dehydrogenases. Structure 2002, 10(9):1211-1223.
  • [54]Bernstein MP, Sandford SA, Allamandola LJ, Gillette JS, Clemett SJ, Zare RN: UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 1999, 283(5405):1135-1138.
  • [55]Deamer D, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ: The first cell membranes. Astrobiology 2002, 2(4):371-381.
  • [56]Wynn-Williams DDEH: Environmental UV radiation: biological strategies for protection and avoidance. In Astrobiology The quest for the conditions of life. Edited by Gerda Horneck CB-K. Berlin: Springer; 2002:245-260.
  • [57]Deamer DW: Boundary structures are formed by organic-components of the Murchison Sarbonaceous Chondrite. Nature 1985, 317(6040):792-794.
  • [58]Cavalier-Smith T: The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 2002, 52(Pt 1):7-76.
  • [59]Cavalier-Smith T: Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006, 361(1470):969-1006.
  • [60]Lombard J, Lopez-Garcia P, Moreira D: The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 2012, 10(7):507-515.
  • [61]Myllykallio HSS, Grosjean H: Folate-Dependent Thymidylate-Forming Enzymes: Parallels between DNA and RNA Metabolic Enzymes and Evolutionary Implications. In DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution. Edited by Henri G. Austin (TX): Landes Bioscience; 2009:275-288.
  • [62]Escartin F, Skouloubris S, Liebl U, Myllykallio H: Flavin-dependent thymidylate synthase X limits chromosomal DNA replication. Proc Natl Acad Sci U S A 2008, 105(29):9948-9952.
  • [63]Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, Liebl U: An alternative flavin-dependent mechanism for thymidylate synthesis. Science 2002, 297(5578):105-107.
  • [64]Chan CX, Bhattacharya D, Reyes-Prieto A: Endosymbiotic and horizontal gene transfer in microbial eukaryotes: Impacts on cell evolution and the tree of life. Mob Genet Elements 2012, 2(2):101-105.
  • [65]Nygaard P: Utilisation of preformed purine bases and nucleosides. In Metabolism of Nucleotides, Nucleosides and Nucleobases in Microorganisms. Edited by Munch-Peterson A. London: Academic Press; 1983:27-93.
  • [66]Bick MD, Davidson RL: Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci U S A 1974, 71(5):2082-2086.
  • [67]Warren RA: Modified bases in bacteriophage DNAs. Annu Rev Microbiol 1980, 34:137-158.
  • [68]Marliere P, Patrouix J, Doring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R: Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Engl 2011, 50(31):7109-7114.
  • [69]Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD: MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2006, 34(Database issue):D511-D516.
  • [70]Claudel-Renard C, Chevalet C, Faraut T, Kahn D: Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003, 31(22):6633-6639.
  • [71]Bairoch A: The ENZYME database in 2000. Nucleic Acids Res 2000, 28(1):304-305.
  • [72]Mavromatis K, Ivanova NN, Chen I-MA, Szeto E, Markowitz VM, Kyrpides NC: The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci 2009, 1(1):63.
  • [73]Wilson D, Madera M, Vogel C, Chothia C, Gough J: The SUPERFAMILY database in 2007: families and functions. Nucleic Acids Res 2007, 35(Database issue):D308-D313.
  • [74]Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C: SCOP: a structural classification of proteins database. Nucleic Acids Res 2000, 28(1):257-259.
  文献评价指标  
  下载次数:55次 浏览次数:16次