期刊论文详细信息
BMC Medical Genomics
Association of candidate single nucleotide polymorphisms with somatic mutation of the epidermal growth factor receptor pathway
Liam O’Connor2  Liz Milla1  Samuel Wormald2 
[1] VLSCI Life Sciences Computation Centre, The University of Melbourne, Melbourne, Australia;Department of Medical Biology, The University of Melbourne, Melbourne, Australia
Others  :  1091698
DOI  :  10.1186/1755-8794-6-43
 received in 2013-07-12, accepted in 2013-10-21,  发布年份 2013
PDF
【 摘 要 】

Background

Tumour growth in colorectal cancer and other solid cancers is frequently supported by activating mutations in the epidermal growth factor receptor (EGFR) signaling pathway (Patholog Res Int 2011:932932, 2011). Treatment of metastatic colorectal cancer with targeted anti-EGFR therapeutics such as cetuximab extends survival in only 25% of patients who test wild-type for KRAS, while the majority of patients prove resistant (J Clin Oncol 28(7):1254–1261, 2010).

Prediction of cetuximab responsiveness for KRAS wild-type colorectal cancers is currently not well defined, and prognostic biomarkers would help tailor treatment to individual patients. Somatic mutation of the EGFR signalling pathway is a prevalent mechanism of resistance to cetuximab (Nature 486(7404):532–536, 2012). If the human genome harbours variants that influence susceptibility of the EGFR pathway to oncogenic mutation, such variants could also be prognostic for cetuximab responsiveness.

Methods

We assessed whether patient genetic variants may associate with somatic mutation of the EGFR signalling pathway. We combined tumour mutation data from the Cancer Genome Atlas with matched patient genetic data, and tested for germline variants that associate with somatic mutation of the EGFR pathway (including EGFR, KRAS, BRAF, PTEN and PIK3CA).

Results

Two single nucleotide polymorphisms (SNPs) located 90 kb upstream of the TERT oncogene associated with somatic mutation of the EGFR pathway beyond the threshold of genome-wide significance: rs7736074 (P = 4.64 × 10-9) and rs4975596 (P = 5.69 × 10-9). We show that allelic variants of rs7736074 and rs4975596 modulate TERT expression levels in multiple cancer types, and exhibit preliminary prognostic value for response to cetuximab.

Conclusions

We have identified two germline SNPs that associate with somatic mutation of the EGFR pathway, and may be prognostic for cetuximab responsiveness. These variants could potentially contribute to a panel of prognostic biomarkers for assessing whether metastatic colorectal cancer patients are likely to derive benefit from cetuximab treatment. Genotyping of a large cohort of cetuximab-treated colorectal cancer patients is called for to further clarify the association.

【 授权许可】

   
2013 Wormald et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128173729219.pdf 626KB PDF download
Figure 4. 33KB Image download
Figure 3. 65KB Image download
Figure 2. 59KB Image download
Figure 1. 103KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Krasinskas AM: EGFR signaling in colorectal carcinoma. Patholog Res Int 2011, 2011:932932.
  • [2]Bardelli A, Siena S: Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 2010, 28(7):1254-1261.
  • [3]Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, et al.: Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012, 486(7404):532-536.
  • [4]Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, et al.: K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008, 359(17):1757-1765.
  • [5]Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B: EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005, 352(8):786-792.
  • [6]Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, Salido M, Gallen M, Marsters S, Tsai SP, et al.: Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med 2012, 18(2):221-223.
  • [7]Chan IS, Ginsburg GS: Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet 2011, 12:217-244.
  • [8]Zhang W, Gordon M, Press OA, Rhodes K, Vallbohmer D, Yang DY, Park D, Fazzone W, Schultheis A, Sherrod AE, et al.: Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab. Pharmacogenet Genomics 2006, 16(7):475-483.
  • [9]Kim JC, Kim SY, Cho DH, Ha YJ, Choi EY, Kim CW, Roh SA, Kim TW, Ju H, Kim YS: Novel chemosensitive single-nucleotide polymorphism markers to targeted regimens in metastatic colorectal cancer. Clin Cancer Res 2011, 17(5):1200-1209.
  • [10]De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S: KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 2011, 12(6):594-603.
  • [11]The Cancer Genome Atlas http://cancergenome.nih.gov/ webcite
  • [12]Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/ webcite
  • [13]Gogarten SM, Bhangale T, Conomos MP, Laurie CA, McHugh CP, Painter I, Zheng X, Crosslin DR, Levine D, Lumley T, et al.: GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 2012, 28(24):3329-3331.
  • [14]Willer CJ, Li Y, Abecasis GR: METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010, 26(17):2190-2191.
  • [15]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38(8):904-909.
  • [16]Robinson MD, McCarthy DJ, Smyth GK: EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-140.
  • [17]Tam IY, Chung LP, Suen WS, Wang E, Wong MC, Ho KK, Lam WK, Chiu SW, Girard L, Minna JD, et al.: Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006, 12(5):1647-1653.
  • [18]Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24(24):2938-2939.
  • [19]Baird DM: Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med 2010, 12:e16.
  • [20]Kang JU, Koo SH, Kwon KC, Park JW, Kim JM: Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet 2008, 182(1):1-11.
  • [21]Garcia-Closas M, Hall P, Nevanlinna H, Pooley K, Morrison J, Richesson DA, Bojesen SE, Nordestgaard BG, Axelsson CK, Arias JI, et al.: Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 2008, 4(4):e1000054.
  • [22]Zhang Y, Toh L, Lau P, Wang X: Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/beta-catenin pathway in human cancer. J Biol Chem 2012, 287(39):32494-32511.
  • [23]Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J, Dalla-Favera R: Direct activation of TERT transcription by c-MYC. Nat Genet 1999, 21(2):220-224.
  • [24]Yin L, Hubbard AK, Giardina C: NF-kappa B regulates transcription of the mouse telomerase catalytic subunit. J Biol Chem 2000, 275(47):36671-36675.
  • [25]Arita H, Narita Y, Fukushima S, Tateishi K, Matsushita Y, Yoshida A, Miyakita Y, Ohno M, Collins VP, Kawahara N, et al.: Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 2013.
  文献评价指标  
  下载次数:27次 浏览次数:6次