期刊论文详细信息
BMC Nephrology
Hepatocyte growth factor signalizes peritoneal membrane failure in peritoneal dialysis
Anabela Rodrigues2  António Cabrita3  Maria J Carvalho3  Olívia Santos3  José C Oliveira4  Ana Paula Bernardo1 
[1] Largo Prof. Abel Salazar, 4099-001 Porto, Portugal;UMIB/ICBAS/UP, Oporto, Portugal;Nephrology Department, St. António Hospital - Oporto Hospital Center, Oporto, Portugal;Clinical Pathology, St. António Hospital - Oporto Hospital Center, Oporto, Portugal
关键词: Water transport;    Ultrafiltration failure;    Peritoneal membrane;    Hepatocyte growth factor;   
Others  :  1082530
DOI  :  10.1186/1471-2369-15-201
 received in 2014-06-05, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Hepatocyte growth factor (HGF) counteracts peritoneal fibrosis in animal models and in-vitro studies, but no study explored effluent HGF in peritoneal dialysis (PD) patients with ultrafiltration failure (UFF). Our aim was to assess the relationship between effluent HGF with UF profile, free water transport (FWT) and small-solute transport.

Methods

We performed 4-hour, 3.86% PET with additional UF measurement at 60 minutes in 68 PD patients. MTACcreatinine, FWT, small-pore ultrafiltration, and effluent HGF were quantified.

Results

Effluent HGF negatively correlated with UF (r = −0.80, p = 0.009) and FWT (r = −0.69, p = 0.04). Patients with UFF had higher dialysate HGF (103 pg/mL vs 77 pg/mL, p = 0.018) and, although not statistically significant, those with FWT compromise had also higher dialysate HGF compared with subgroup of UFF without FWT compromise (104 pg/mL vs 88 pg/mL, p = 0.08). FWT ≤ 45% without clinical UFF was documented in some patients who also had increased effluent HGF.

Conclusions

Dialysate HGF concentration is significantly higher among patients with UFF, specially, if FWT is impaired, being a sign of peritoneal membrane deterioration.

【 授权许可】

   
2014 Bernardo et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20141224171254349.pdf 463KB PDF download
Figure 2. 31KB Image download
Figure 1. 13KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Heimbürger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B: Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990, 38:495-506.
  • [2]Krediet RT, Imholz AL, Struijk DG, Koomen GC, Arisz L: Ultrafiltration failure in continuous ambulatory peritoneal dialysis. Perit Dial Int 1993, 13(Suppl 2):S59-S66.
  • [3]Krediet RT, Lindholm B, Rippe B: Pathophysiology of peritoneal membrane failure. Perit Dial Int 2000, 20(Suppl4):S22-S42.
  • [4]Smit W, Schouten N, van den Berg N, Langedijk MJ, Struijk DG: Krediet RT; Netherlands Ultrafiltration Failure Study Group. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 2004, 24:562-570.
  • [5]Smit W, Parikova A, Struijk DG, Krediet RT: The difference in causes of early and late ultrafiltration failure in peritoneal dialysis. Perit Dial Int 2005, 25(S3):S41-S45.
  • [6]Parikova A, Smit W, Struijk DG, Krediet RT: Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006, 70:1988-1994.
  • [7]Bernardo AP, Bajo MA, Santos O, Del Peso G, Carvalho MJ, Cabrita A, Selgas R, Rodrigues A: Two-in-one protocol: simultaneous small-pore and ultrasmall-pore peritoneal transport quantification. Perit Dial Int 2012, 32(5):537-544.
  • [8]Del Peso G, Jiménez-Heffernan JA, Bajo MA, Aroeira LS, Aguilera A, Fernández-Perpén A, Cirugeda A, Castro MJ, de Gracia R, Sánchez-Villanueva R, Sánchez-Tomero JA, López-Cabrera M, Selgas R: Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int Suppl. 2008, (108):S26-33.
  • [9]Shukla MN, Rose JL, Ray R, Lathrop KL, Ray A, Ray P: Hepatocyte growth factor inhibits epithelial to myofibroblast transition in lung cells via Smad7. Am J Respir Cell Mol Biol 2009, 40:643-653.
  • [10]Yang J, Dai C, Liu Y: A novel mechanism by which hepatocyte growth factor bloks tubular epithelial to mesenchymal transition. J Am Soc Nephrol 2005, 16:68-78.
  • [11]Nakamura S, Niwa T: Pyridoxal phosphate and hepatocyte growth factor prevent dialysate-induced peritoneal damage. J Am Soc Nephrol 2005, 16:144-150.
  • [12]Ueno T, Nakashima A, Doi S, Kawamoto T, Honda K, Yokoyama Y, Doi T, Higashi Y, Yorioka N, Kato Y, Kohno N, Masaki T: Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int 2013, 84:297-307.
  • [13]Yu MA, Shin KS, Kim JH, Kim YI, Chung SS, Park SH, Kim YL, Kang DH: HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 2009, 20:567-581.
  • [14]Rippe B, Venturoli D: Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am J Physiol Renal Physiol 2007, 292:F1035-F1043.
  • [15]Waniewski J, Debowska M, Lindholm B: Water and solute transport through different types of pores in peritoneal membrane in CAPD patients with ultrafiltration failure. Perit Dial Int 2009, 29:664-669.
  • [16]Devuyst O, Rippe B: Water transport across the peritoneal membrane. Kidney Int 2014, 85(4):750-758.
  • [17]Twardowski ZJ, Nolph KO, Khanna R, Prowant BF, Ryan LP, Moore HL, Nielsen MP: Peritoneal equilibration test. Perit Dial Bull 1987, 7:138-147.
  • [18]Garred LJ, Canaud B, Farrell PC: A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 1983, 6:131-137.
  • [19]Venturoli D, Rippe B: Validation by computer simulation of two indirect methods for quantification of freee water transport in peritoneal dialysis. Perit Dial Int 2005, 25:77-84.
  • [20]Waniewski J: Peritoneal fluid transport: mechanisms, pathways, methods of assessment. Arch Med Res 2013, 44:576-583.
  • [21]Nakamura S, Tachikawa T, Tobita K, Miyazaki S, Sakai S, Morita T, Hirasawa Y, Weigle B, Pischetsrieder M, Niwa T: Role of advanced glycation end products and growth factors in peritoneal dysfunction in CAPD patients. Am J Kidney Dis 2003, 41(Suppl 1):S61-S67.
  • [22]Mizuiri S, Hemmi H, Arita M, Tai R, Hattori Y, Muto A, Suzuki Y, Ohashi Y, Sakai K, Aikawa A: Effluent markers related to epithelial mesenchymal transition with adjusted values for effluent cancer antigen 125 in peritoneal dialysis patients. Int J Nephrol 2011, 2011:261040.
  • [23]Pecoits-Filho R, Araújo MR, Lindholm B, Stenvinkel P, Abensur H, Romão JE Jr, Marcondes M, De Oliveira AH, Noronha IL: Plasma and dialysate Il-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002, 17:1480-1486.
  • [24]Rodrigues AS, Martins M, Korevaar JC, Silva S, Oliveira JC, Cabrita A: Castro e Melo J, Krediet RT. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am J Nephrol 2007, 27:84-91.
  • [25]Krediet R: Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit Dial Int 2001, 21:560-567.
  • [26]Breborowicz A, Breborowicz M, Pyda M, Połubinska A, Oreopoulos D: Limitations of CA125 as an index of peritoneal mesothelial cell mass. Nephron Clin Pract 2005, 100:c46-c51.
  • [27]Goodlad C, Tam FWK, Ahmad S, Bhangal G, North BV, Brown EA: Dialysate cytokine levels do not predict encapsulating peritoneal sclerosis. Perit Dial Int 2014, 34(6):594-604.
  • [28]Sampimon DE, Korte MR, Barreto DL, Vlijm A, Waart R, Struijk DG, Krediet RT: Early diagnostic markers for encapsulating peritoneal sclerosis: a case–control study. Perit Dial Int 2010, 30:163-169.
  • [29]Barreto DL, Coester AM, Struijk DG, Krediet RT: Can effluent matrix metalloproteinase 2 and plasminogen activator inhibitor 1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit Dial Int 2013, 33(5):529-537.
  • [30]Lambie ML, John B, Mushahar L, Huckvale C, Davies S: The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int 2010, 78:611-618.
  • [31]La Milia V, Di Filippo S, Crepaldi M, Del Vecchio L, Dell'Oro C, Andrulli S, Locatelli F: Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kindey Int 2005, 68:840-846.
  • [32]Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK: Williams GT; Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002, 13:470-479.
  • [33]Honda K, Hamada C, Nakayama M, Miyazaki M, Sherif AM, Harada T: Hirano H; Peritoneal Biopsy Study Group of the Japanese Society for Peritoneal Dialysis. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol 2008, 3:720-728.
  • [34]Oliveira L, Rodrigues A: Previous renal replacement therapy time at start of peritoneal dialysis independently impact on peritoneal membrane ultrafiltration failure. Int J Nephrol 2011, 2011:685457. Epub 2011 Sep 29 doi:10.4061/2011/685457
  • [35]Shimaoka T, Hamada C, Kaneko K, Io H, Sekiguchi Y, Aruga S, Inuma J, Inami Y, Hotta Y, Horikoshi S, Kumasaka T, Tomino Y: Quantitative evaluation and assessment of peritoneal morphologic changes in peritoneal dialysis patients. Nephrol Dial Transplant 2010, 25(10):3379-3385. Epub 2010 Apr 22 doi:10.1093/ndt/gfq194
  文献评价指标  
  下载次数:21次 浏览次数:15次