期刊论文详细信息
BMC Genomics
Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells
Junji Takeda6  Kosuke Yusa2  Taroh Kinoshita3  Nakaba Sugimoto4  Kyoji Horie1  Jun Sese5  Yusuke Maeda3  Chikara Kokubu6  Masahiro Tokunaga6 
[1] Present address: Department of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan;Stem Cell Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan;Department of Infectious Disease Control, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan;Department of Computer Science, Tokyo Institute of Technology, 2-12-1-W8-60 Oookayama, Meguro-ku, Tokyo 152-8550, Japan;Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
关键词: Whole-exome sequencing;    Saturation mutagenesis;    N-ethyl-N-nitrosourea;    Haploid mouse embryonic stem cell;    GPI-anchor;    Computer simulation;   
Others  :  1091258
DOI  :  10.1186/1471-2164-15-1016
 received in 2014-06-07, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of “saturation” (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes.

Results

By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation.

Conclusions

Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of mutants is available.

【 授权许可】

   
2014 Tokunaga et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170614892.pdf 934KB PDF download
Figure 6. 31KB Image download
Figure 5. 39KB Image download
Figure 4. 39KB Image download
Figure 3. 45KB Image download
Figure 2. 59KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Schimenti J, Bucan M: Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res 1998, 8(7):698-710.
  • [2]Pollock DD, Larkin JC: Estimating the degree of saturation in mutant screens. Genetics 2004, 168(1):489-502.
  • [3]Moresco EM, Li X, Beutler B: Going forward with genetics: recent technological advances and forward genetics in mice. Am J Pathol 2013, 182(5):1462-1473.
  • [4]Yusa K, Horie K, Kondoh G, Kouno M, Maeda Y, Kinoshita T, Takeda J: Genome-wide phenotype analysis in ES cells by regulated disruption of Bloom's syndrome gene. Nature 2004, 429(6994):896-899.
  • [5]Guo G, Wang W, Bradley A: Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells. Nature 2004, 429(6994):891-895.
  • [6]Horie K, Kokubu C, Yoshida J, Akagi K, Isotani A, Oshitani A, Yusa K, Ikeda R, Huang Y, Bradley A, Takeda J: A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nat Methods 2011, 8(12):1071-1077.
  • [7]Leeb M, Wutz A: Derivation of haploid embryonic stem cells from mouse embryos. Nature 2011, 479(7371):131-134.
  • [8]Elling U, Taubenschmid J, Wirnsberger G, O'Malley R, Demers SP, Vanhaelen Q, Shukalyuk AI, Schmauss G, Schramek D, Schnuetgen F, von Melchner H, Ecker JR, Stanford WL, Zuber J, Stark A, Penninger JM: Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 2011, 9(6):563-574.
  • [9]Yang H, Shi L, Wang BA, Liang D, Zhong C, Liu W, Nie Y, Liu J, Zhao J, Gao X, Li D, Xu GL, Li J: Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 2012, 149(3):605-617.
  • [10]Li W, Shuai L, Wan H, Dong M, Wang M, Sang L, Feng C, Luo GZ, Li T, Li X, Wang L, Zheng QY, Sheng C, Wu HJ, Liu Z, Liu L, Wang L, Wang XJ, Zhao XY, Zhou Q: Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature 2012, 490(7420):407-411.
  • [11]Kokubu C, Takeda J: When half is better than the whole: advances in haploid embryonic stem cell technology. Cell Stem Cell 2014, 14(3):265-267.
  • [12]Fujita M, Kinoshita T: Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 2010, 584(9):1670-1677.
  • [13]Kinoshita T, Fujita M, Maeda Y: Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 2008, 144(3):287-294.
  • [14]Maeda Y, Kinoshita T: Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 2011, 50(4):411-424.
  • [15]Hong Y, Ohishi K, Inoue N, Kang JY, Shime H, Horiguchi Y, van der Goot FG, Sugimoto N, Kinoshita T: Requirement of N-glycan on GPI-anchored proteins for efficient binding of aerolysin but not Clostridium septicum alpha-toxin. EMBO J 2002, 21(19):5047-5056.
  • [16]Tarutani M, Itami S, Okabe M, Ikawa M, Tezuka T, Yoshikawa K, Kinoshita T, Takeda J: Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc Natl Acad Sci U S A 1997, 94(14):7400-7405.
  • [17]Justice MJ, Noveroske JK, Weber JS, Zheng B, Bradley A: Mouse ENU mutagenesis. Hum Mol Genet 1999, 8(10):1955-1963.
  • [18]Kile BT, Hilton DJ: The art and design of genetic screens: mouse. Nat Rev Genet 2005, 6(7):557-567.
  • [19]Leeb M, Walker R, Mansfield B, Nichols J, Smith A, Wutz A: Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development 2012, 139(18):3301-3305.
  • [20]Chen Y, Yee D, Dains K, Chatterjee A, Cavalcoli J, Schneider E, Om J, Woychik RP, Magnuson T: Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat Genet 2000, 24(3):314-317.
  • [21]Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T: PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 2005, 280(10):9489-9497.
  • [22]Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T: Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 1999, 274(49):35099-35106.
  • [23]Hong Y, Ohishi K, Watanabe R, Endo Y, Maeda Y, Kinoshita T: GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis. J Biol Chem 1999, 274(26):18582-18588.
  • [24]Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014, 32(3):267-273.
  • [25]Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann WK, Miyawaki S, Sugano S, Haferlach C, Koeffler HP, Shih LY, Haferlach T, Chiba S, Nakauchi H, et al.: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011, 478(7367):64-69.
  • [26]Coghill EL, Hugill A, Parkinson N, Davison C, Glenister P, Clements S, Hunter J, Cox RD, Brown SD: A gene-driven approach to the identification of ENU mutants in the mouse. Nat Genet 2002, 30(3):255-256.
  • [27]Bull KR, Rimmer AJ, Siggs OM, Miosge LA, Roots CM, Enders A, Bertram EM, Crockford TL, Whittle B, Potter PK, Simon MM, Mallon AM, Brown SD, Beutler B, Goodnow CC, Lunter G, Cornall RJ: Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations. PLoS Genet 2013, 9(1):e1003219.
  • [28]Nolan PM, Hugill A, Cox RD: ENU mutagenesis in the mouse: application to human genetic disease. Brief Funct Genomic Proteomic 2002, 1(3):278-289.
  • [29]Andrews TD, Whittle B, Field MA, Balakishnan B, Zhang Y, Shao Y, Cho V, Kirk M, Singh M, Xia Y, Hager J, Winslade S, Sjollema G, Beutler B, Enders A, Goodnow CC: Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol 2012, 2(5):120061.
  • [30]Arnold CN, Barnes MJ, Berger M, Blasius AL, Brandl K, Croker B, Crozat K, Du X, Eidenschenk C, Georgel P, Hoebe K, Huang H, Jiang Z, Krebs P, La Vine D, Li X, Lyon S, Moresco EM, Murray AR, Popkin DL, Rutschmann S, Siggs OM, Smart NG, Sun L, Tabeta K, Webster V, Tomisato W, Won S, Xia Y, Xiao N, et al.: ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Res Notes 2012, 5:577. BioMed Central Full Text
  • [31]Noll DM, Clarke ND: Covalent capture of a human O(6)-alkylguanine alkyltransferase-DNA complex using N(1), O(6)-ethanoxanthosine, a mechanism-based crosslinker. Nucleic Acids Res 2001, 29(19):4025-4034.
  • [32]Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6(2):80-92.
  • [33]SnpEff [http://snpeff.sourceforge.net/ webcite]
  • [34]SnpEff Documentation [http://snpeff.sourceforge.net/SnpEff_manual.html webcite]
  • [35]Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, Searle S, Farrell CM, Loveland JE, Ruef BJ, Hart E, Suner MM, Landrum MJ, Aken B, Ayling S, Baertsch R, Fernandez-Banet J, Cherry JL, Curwen V, Dicuccio M, Kellis M, Lee J, Lin MF, Schuster M, Shkeda A, Amid C, Brown G, Dukhanina O, Frankish A, Hart J, et al.: The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Res 2009, 19(7):1316-1323.
  • [36]Bürckstümmer T, Banning C, Hainzl P, Schobesberger R, Kerzendorfer C, Pauler FM, Chen D, Them N, Schischlik F, Rebsamen M, Smida M, Fece de la Cruz F, Lapao A, Liszt M, Eizinger B, Guenzl PM, Blomen VA, Konopka T, Gapp B, Parapatics K, Maier B, Stöckl J, Fischl W, Salic S, Taba Casari MR, Knapp S, Bennett KL, Bock C, Colinge J, Kralovics R, et al.: A reversible gene trap collection empowers haploid genetics in human cells. Nat Methods 2013, 10(10):965-971.
  • [37]Leeb M, Dietmann S, Paramor M, Niwa H, Smith A: Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 2014, 14(3):385-393.
  • [38]Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadiñanos J, Yusa K, Conte N, Bradley A: The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 2013, 33(7):1317-1330.
  • [39]Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014, 42:D199-D205.
  • [40]Schneeberger K: Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 2014, 15(10):662-676.
  • [41]Pettitt SJ, Rehman FL, Bajrami I, Brough R, Wallberg F, Kozarewa I, Fenwick K, Assiotis I, Chen L, Campbell J, Lord CJ, Ashworth A: A genetic screen using the PiggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS One 2013, 8(4):e61520.
  • [42]TopHat [http://ccb.jhu.edu/software/tophat/index.shtml webcite]
  • [43]FastQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ webcite]
  • [44]Burrows-Wheeler Aligner [http://bio-bwa.sourceforge.net/ webcite]
  • [45]SAMtools [http://samtools.sourceforge.net/ webcite]
  • [46]Picard [http://broadinstitute.github.io/picard webcite]
  • [47]Agilent SureDesign [https://earray.chem.agilent.com/suredesign/ webcite]
  • [48]gatk [http://www.broadinstitute.org/gatk/ webcite]
  • [49]Integrative Genomics Viewer [http://www.broadinstitute.org/igv/ webcite]
  • [50]CCDS Database [http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi webcite]
  文献评价指标  
  下载次数:58次 浏览次数:14次