期刊论文详细信息
BMC Genomics
A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui
Volker Müller1  Rolf Daniel2  Marie Charlotte Weghoff1  Anja Poehlein2  Verena Hess1 
[1] Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany;Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg August University, Institute for Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, Germany
关键词: Ech;    H+ transport;    Genome sequence;    Energy conservation;    kivui;    Thermoanaerobacter ;    Acetogen;   
Others  :  1127141
DOI  :  10.1186/1471-2164-15-1139
 received in 2014-10-02, accepted in 2014-12-12,  发布年份 2014
PDF
【 摘 要 】

Background

Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2 + CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui.

Results

The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G + C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2 + CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech).

Conclusions

The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2 + CO2 make T.kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.

【 授权许可】

   
2014 Hess et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220022926803.pdf 1248KB PDF download
Figure 7. 58KB Image download
Figure 6. 67KB Image download
Figure 5. 66KB Image download
Figure 4. 78KB Image download
Figure 3. 46KB Image download
Figure 2. 50KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Drake HL, Gößner AS, Daniel SL: Old acetogens, new light. Ann N Y Acad Sci 2008, 1125:100-128.
  • [2]Müller V, Frerichs J: Acetogenic bacteria. In eLS. Edited by Battista J. Chichester: John Wiley & Sons Ltd; 2013. [doi:10.1002/9780470015902.a0020086.pub2]
  • [3]Ljungdahl LG: The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In Acetogenesis. Edited by Drake HL. New York: Chapman & Hall; 1994:63-87.
  • [4]Ragsdale SW: Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 2008, 1125:129-136.
  • [5]Pezacka E, Wood HG: Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc Natl Acad Sci U S A 1984, 81:6261-6265.
  • [6]Raybuck SA, Bastian NR, Orme-Johnson WH, Walsh CT: Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing CO dehydrogenase from Clostridium thermoaceticum. Biochemistry 1988, 27:7698-7702.
  • [7]Seravalli J, Kumar M, Lu WP, Ragsdale SW: Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: Kinetic characterization of the intermediates. Biochemistry 1997, 36:11241-11251.
  • [8]Himes RH, Harmony JA: Formyltetrahydrofolate synthetase. Crc Cr Rev Bioch Mol 1973, 1:501-535.
  • [9]Lovell CR, Przybyla A, Ljungdahl LG: Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch Microbiol 1988, 149:280-285.
  • [10]Ragsdale SW, Ljungdahl LG, DerVartanian DV: EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem Biophys Res Commun 1982, 108:658-663.
  • [11]Ragsdale SW, Ljungdahl LG, DerVartanian DV: Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J Bacteriol 1983, 155:1224-1237.
  • [12]Ragsdale SW, Wood HG: Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps in the synthesis. J Biol Chem 1985, 260:3970-3977.
  • [13]Schaupp A, Ljungdahl LG: Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol 1974, 100:121-129.
  • [14]Eden G, Fuchs G: Total synthesis of acetyl coenzyme A involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 1982, 133:66-74.
  • [15]Biegel E, Schmidt S, González JM, Müller V: Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 2011, 68:613-634.
  • [16]Biegel E, Müller V: Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc Natl Acad Sci U S A 2010, 107:18138-18142.
  • [17]Heise R, Reidlinger J, Müller V, Gottschalk G: A sodium-stimulated ATP synthase in the acetogenic bacterium Acetobacterium woodii. FEBS Lett 1991, 295:119-122.
  • [18]Müller V, Aufurth S, Rahlfs S: The Na+ cycle in Acetobacterium woodii: identification and characterization of a Na+-translocating F1FO-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids. Biochim Biophys Acta 2001, 1505:108-120.
  • [19]Schuchmann K, Müller V: Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 2014, 12:809-821.
  • [20]Fröstl JM, Seifritz C, Drake HL: Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum. J Bacteriol 1996, 178:4597-4603.
  • [21]Seifritz C, Daniel SL, Gössner A, Drake HL: Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 1993, 175:8008-8013.
  • [22]Dilling S, Imkamp F, Schmidt S, Müller V: Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 2007, 73:3630-3636.
  • [23]Misoph M, Daniel SL, Drake HL: Bidirectional usage of ferulate by the acetogen Peptostreptococcus productus U-1: CO2 and aromatic acrylate groups as competing electron accepters. Microbiology-Uk 1996, 142:1983-1988.
  • [24]Gössner A, Daniel SL, Drake HL: Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch Microbiol 1994, 161:126-131.
  • [25]Matthies C, Freiberger A, Drake HL: Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch Microbiol 1993, 160:273-278.
  • [26]Tanner RS, Miller LM, Yang D: Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology Group-I. Int J Syst Bact 1993, 43:232-236.
  • [27]Liou JS, Balkwill DL, Drake GR, Tanner RS: Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 2005, 55:2085-2091.
  • [28]Schiel-Bengelsdorf B, Dürre P: Pathway engineering and synthetic biology using acetogens. FEBS Lett 2012, 586:2191-2198.
  • [29]Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD: 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 2011, 77:5467-5475.
  • [30]Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW: The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 2008, 10:2550-2573.
  • [31]Mock J, Wang S, Huang H, Kahnt J, Thauer RK: Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 2014, 196:3303-3314.
  • [32]Huang H, Wang S, Moll J, Thauer RK: Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 2012, 194:3689-3699.
  • [33]Leigh JA, Mayer F, Wolfe RS: Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 1981, 129:275-280.
  • [34]Daniel SL, Hsu T, Dean SI, Drake HL: Characterization of the H2-dependent and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 1990, 172:4464-4471.
  • [35]Yang H, Drake HL: Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl Environ Microbiol 1990, 56:81-86.
  • [36]Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of proteine-dye-binding. Anal Biochem 1976, 72:248-254.
  • [37]Hess V, Schuchmann K, Müller V: The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J Biol Chem 2013, 288:31496-31502.
  • [38]Schönheit P, Wäscher C, Thauer RK: A rapid procedure for the purification of ferredoxin from clostridia using polyethylenimine. FEBS Lett 1978, 89:219-222.
  • [39]Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8:4321-4325.
  • [40]Wilson K: Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology. Edited by Ausubel FM. Hoboken: John Wiley & Sons, Inc; 2001:56:2.4.1.-2.4.5.
  • [41]Chevreux B: MIRA: an automated genome and EST assembler. Heidelberg: Ruprecht-Karls University; 2005.
  • [42]Darling AE, Mau B, Perna NT: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010, 5:e11147.
  • [43]Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC: IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014, 42:D560-D567.
  • [44]Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyprides NC: IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 2012, 40:D115-D122.
  • [45]Tettelin H, Radune D, Kasif S, Khouri H, Salzberg SL: Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics 1999, 62:500-507.
  • [46]Staden R, Beal KF, Bonfield JK: The Staden package, 1998. Methods Mol Biol 2000, 132:115-130.
  • [47]Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010, 11:119. BioMed Central Full Text
  • [48]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [49]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [50]Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17:847-848.
  • [51]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39:W347-W352.
  • [52]Schmidt K, Liaaen Jensen S, Schlegel HG: Die Carotinoide der Thiorhodaceae. I Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 1963, 46:117-126.
  • [53]Horvath P, Barrangou R: CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327:167-170.
  • [54]Haft DH, Selengut J, Mongodin EF, Nelson KE: A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 2005, 1:e60.
  • [55]Westra ER, Brouns SJ: The rise and fall of CRISPRs–dynamics of spacer acquisition and loss. Mol Microbiol 2012, 85:1021-1025.
  • [56]Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV: Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011, 9:467-477.
  • [57]Poehlein A, Schmidt S, Kaster A-K, Goenrich M, Vollmers J, Thürmer A, Bertsch J, Schuchmann K, Voigt B, Hecker M, Daniel R, Thauer RK, Gottschalk G, Müller V: An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 2012, 7:e33439.
  • [58]Schuchmann K, Müller V: Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science 2013, 342:1382-1385.
  • [59]Li LF, Ljungdahl L, Wood HG: Properties of nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum. J Bacteriol 1966, 92:405-412.
  • [60]Schuchmann K, Müller V: A bacterial electron bifurcating hydrogenase. J Biol Chem 2012, 287:31165-31171.
  • [61]Schut GJ, Adams MW: The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 2009, 191:4451-4457.
  • [62]Wang S, Huang H, Kahnt J, Thauer RK: A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica. J Bacteriol 2013, 195:1267-1275.
  • [63]Müller V, Grüber G: ATP synthases: structure, function and evolution of unique energy converters. Cell Mol Life Sci 2003, 60:474-494.
  • [64]Brandt K, Müller DB, Hoffmann J, Hübert C, Brutschy B, Deckers-Hebestreit G, Müller V: Functional production of the Na+ F1FO ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. J Bioenerg Biomembr 2013, 45:15-23.
  • [65]Rahlfs S, Aufurth S, Müller V: The Na+-F1FO-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kDa. J Biol Chem 1999, 274:33999-34004.
  • [66]Meier T, Krah A, Bond PJ, Pogoryelov D, Diederichs K, Faraldo-Gómez JD: Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J Mol Biol 2009, 391:498-507.
  • [67]Hedderich R: Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 2004, 36:65-75.
  • [68]Welte C, Krätzer C, Deppenmeier U: Involvement of Ech hydrogenase in energy conservation of Methanosarcina mazei. FEBS J 2010, 277:3396-3403.
  • [69]Meuer J, Bartoschek S, Koch J, Künkel A, Hedderich R: Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem 1999, 265:325-335.
  • [70]Welte C, Deppenmeier U: Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta 2013, 1837:1130-1147.
  • [71]Hedderich R, Forzi L: Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol 2005, 10:92-104.
  • [72]Maden BE: Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 2000, 350:609-629.
  • [73]Thauer RK, Jungermann K, Decker K: Energy conservation in chemotrophic anaerobic bacteria. Bact Rev 1977, 41:100-180.
  • [74]Gottwald M, Andreesen JR, LeGall J, Ljungdahl LG: Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J Bacteriol 1975, 122:325-328.
  • [75]Hugenholtz J, Ivey DM, Ljungdahl LG: Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes. J Bacteriol 1987, 169:5845-5847.
  • [76]Hugenholtz J, Ljungdahl LG: Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoaceticum. J Bacteriol 1989, 171:2873-2875.
  • [77]Hugenholtz J, Ljungdahl LG: Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol Lett 1990, 69:117-122.
  • [78]Martin WF: Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett 2012, 586:485-493.
  文献评价指标  
  下载次数:106次 浏览次数:45次