期刊论文详细信息
BMC Evolutionary Biology
A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents
Robert C Vrijenhoek1  Julio BJ Harvey1  Yong-Jin Won2  Shannon B Johnson1 
[1] Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039-9644, USA;Division of EcoScience, Ewha Womans University, Seoul, 120-750, South Korea
关键词: Bathymodiolus thermophilus;    Hydrothermal vent;    Deep-sea;    Linkage disequilibrium;    Recombination;    Hybridization;    Bathymodiolus antarcticus n. sp;   
Others  :  1130096
DOI  :  10.1186/1471-2148-13-21
 received in 2012-09-28, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge.

Results

A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage.

Conclusions

Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self-recruitment of mussels by removing planktotrophic larvae from the ridge axis. Furthermore, frequent local extinction events in this tectonically dynamic region might produce a demographic sink rather than a source for dispersing mussel larvae. Historical changes in tectonic rates and current patterns appear to permit intermittent contact and introgression between the two species.

【 授权许可】

   
2013 Johnson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150226163000391.pdf 831KB PDF download
Figure 6. 147KB Image download
Figure 5. 287KB Image download
Figure 4. 164KB Image download
Figure 3. 119KB Image download
Figure 2. 55KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Barton NH, Hewitt GM: Analysis of hybrid zones. Annu Rev Ecol Syst 1985, 16:113-148.
  • [2]Harrison RG: Hybrid Zones and the Evolutionary Process. Oxford: Oxford Press; 1993.
  • [3]Hewitt GM: Hybrid zones—natural laboratories for evolutionary studies. Trends Ecol Evol 1988, 3:158-167.
  • [4]Moore WS, Price TJ: Nature of selection in the northern flicker hybrid zone and its implications for speciation theory. In Hybrid Zones and the Evolutionary Process. Edited by Harrison RG. Oxford: Oxford Press; 1993:196-225.
  • [5]Arnold ML: Natural Hybridization and Evolution. Oxford, UK: Oxford University Press; 1997.
  • [6]Endler J: Geographic Variation, Speciation and Clines. Princeton (NJ): Princeton University Press; 1977.
  • [7]Remington CL: Suture-zones of hybrid interaction between recently joined biotas. In Evolutionary Biology. Edited by Dobzhansky T, Hecht MK, Steere WC. New York: Plenum Press; 1968:321-428.
  • [8]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405(6789):907-913.
  • [9]Palumbi SR: Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 1994, 25:547-572.
  • [10]Gardner JPA: Hybridization in the sea. Adv Mar Biol 1997, 31:1-78.
  • [11]Koehn RK: The genetics and taxonomy of species in the genus Mytilus. Aquaculture 1991, 94:125-145.
  • [12]Rawson PD, Hilbish TJ: Evolutionary relationships among male and female mitochondrial DNA lineages in the Mylilus edulis species complex. Mol Biol Evol 1995, 12:893-901.
  • [13]McDonald JH, Seed R, Koehn RK: Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar Biol 1991, 111:323-333.
  • [14]Rawson PD, Agrawal V, Hilbish TJ: Hybridization between the blue mussels Mytilus galloprovincialis and M. trossulus along the pacific coast of North America: evidence for limited introgression. Mar Biol 1999, 134:201-211.
  • [15]Gosling EM: The genetics of Mytilus. In The mussel, Mytilus: ecology, physiology, genetics and culture, developments in aquaculture and fisheries science. Edited by Gosling EM. Amsterdam: Elsevier; 1992:309-382.
  • [16]O’Mullan GD, Maas PAY, Lutz RA, Vrijenhoek RC: A hybrid zone between hydrothermal vent mussels (Bivalvia: Mytilidae) from the Mid-Atlantic Ridge. Mol Ecol 2001, 10:2819-2831.
  • [17]Van Dover CL, German CR, Speer KG, Parson LM, Vrijenhoek RC: Evolution and biogeography of deep-sea vent and seep invertebrates. Science 2002, 295(5558):1253-1257.
  • [18]Van Dover CL: The ecology of Deep-Sea Hydrothermal Vents. Princeton: Princeton University Press; 2000.
  • [19]Thomson RE, Mihály SF, Rabinovich AB, McDuff RE, Veirs SR, Stahr FR: Constrained circulation at Endeavour ridge facilitates colonization by vent larvae. Nature 2003, 24:545-549.
  • [20]Mullineaux LS, Adams DK, Mills SW, Beaulieu SE: Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption. Proc Natl Acad Sci 2010, 107(17):7829-7834.
  • [21]Audzijonyte A, Vrijenhoek R: When gaps really are gaps: Statistical phylogeography of hydrothermal vent invertebrates. Evolution 2010, 64(8):2369-2384.
  • [22]Vrijenhoek RC: Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Mol Ecol 2010, 19:4391-4411.
  • [23]Desbruyères D, Almeida A, Comtet T, Khripounoff A, Le Bris N, Sarradin P-M, Segonzac M: A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic ridge: Dispersal vs. environmental controls. Hydrobiologia 2000, 440(1/3):201-216.
  • [24]Won Y-J, Hallam SJ, O’Mullan GD, Vrijenhoek RC: Cytonuclear disequilibrium in a hybrid zone involving deep-sea hydrothermal vent mussels of the genus Bathymodiolus. Mol Ecol 2003, 12(11):3185-3190.
  • [25]Faure B, Jollivet D, Tanguy A, Bonhomme F, Bierne N: Speciation in the deep sea: Multi-locus analysis of divergence and gene flow between two hybridizing species of hydrothermal vent mussels. PLoS One 2009, 4(8):e6485.
  • [26]Guinot D, Hurtado LA: Two new species of hydrothermal vent crabs of the genus Bythograea from the southern east pacific rise and from the galapagos rift (Crustacea Decapoda Brachyura Bythograeidae). Comptes Rendus Biologies 2003, 326:423-439.
  • [27]Guinot D, Hurtado LA, Vrijenhoek RC: New genus and species of brachyuran crab from the southern east pacific rise (Crustacea Decapoda Brachyura Bythograeidae). Comptes Rendus Biologies 2002, 325(11):1119-1128.
  • [28]Johnson S, Warén A, Vrijenhoek RC: DNA barcoding of Lepetodrilus limpets reveals cryptic species. J Shellfish Res 2008, 27(1):43-51.
  • [29]Won Y-J, Young CR, Lutz RA, Vrijenhoek RC: Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 2003, 12(1):169-184.
  • [30]Hurtado LA, Lutz RA, Vrijenhoek RC: Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol Ecol 2004, 13(9):2603-2615.
  • [31]Coykendall DK, Johnson SB, Karl SA, Lutz RA, Vrijenhoek RC: Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents. BMC Evol Biol 2011, 11:96. BioMed Central Full Text
  • [32]Stoffers P, Worthington T, Petersen S, Hannington M, Tükay M, Ackermand D, Borowski C, Danert S, Fretdorff S, Haase K, et al.: Cruise Report SONNE 157, FOUNDATION 3: Magmatic and Hydrothermal Processes at a Spreading Axis influenced by a Hotspot: the Pacific-Antarctic Ridge and Off-Axis Seamounts near 37°S, Berichte - Reports Institut für Geowissenschafen Nr 17. Kiel, Germany: Christrian-Albrechts Universität zu Kiel; 2001.
  • [33]Stoffers P, Worthington T, Hekinian R, Petersen S, Hannington M, Tükay M, the SIO 157 Shipboard Scientific Party: Silicic volcanism and hydrothermal activity documented at Pacific-Antarctic Ridge. EOS, Transactions of the American Geophysical Union 2002, 83(28):32-38.
  • [34]Kenk VC, Wilson BR: A new mussel (Bivalvia, Mytilidae) from hydrothermal vents in the Galapagos Rift Zone. Malacologia 1985, 26(3180):253-271.
  • [35]Holler G: Erschnelnungsformer hydrothermler Activität am Ostpazifischen Rücken zwischen 6° und 30° Süd. Göttingen: Georg August Universität; 1993. [Ph.D. Dissertation]
  • [36]Plouviez S, Shank TM, Faure B, Daguin-Thiebaut C, Viard F, Lallier FH, Jollivet D: Comparative phylogeography among hydrothermal vent species along the East Pacific Rise reveals vicariant processes and population expansion in the South. Mol Ecol 2009, 18(18):3903-3917.
  • [37]Génio L, Johnson SB, Vrijenhoek RC, Cunha MR, Tyler PA, Kiel S, Little CTS: New record of “Bathymodiolus” mauritanicus Cosel,2002 from the Gulf of Cadiz (NE Atlantic) mud volcanoes. J Shellfish Res 2008, 27(1):53-61.
  • [38]Audzijonyte A, Vrijenhoek RC: Three nuclear genes for phylogenetic, SNP and population genetic studies of molluscs and other invertebrates. Mol Ecol Resour 2010, 10:200-204.
  • [39]Johnson SB, Young CR, Jones WJ, Warén A, Vrijenhoek RC: Migration, isolation, and speciation of hydrothermal vent limpets (Gastropoda; Lepetodrilidae) across the Blanco Transform Fault. Biol Bull 2006, 210(2):140-157.
  • [40]Excoffier L, Lischer HEL: Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
  • [41]Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147(2):915-925.
  • [42]Slatkin M: Linkage disequilibrium in growing and stable populations. Genetics 1994, 137(1):331.
  • [43]Slatkin M, Barton NH: A comparison of three indirect methods for estimating average levels of gene flow. Evolution 1989, 43(7):1349-1368.
  • [44]Smouse PE, Long JC: Matrix correlation analysis in anthropology and genetics. Yearbook of Physical Anthropology 1992, 35:187-213.
  • [45]Lyngso RB, Song YS, Hein J: Minimum recombination histories by branch and bound. 2005, 239-250. [Workshop on Algorithms in Bioinformatics]
  • [46]Drummond A, Rambaut A: BEAST. v. 1.0.3. Oxford, UK: University of Oxford; 2003.
  • [47]Asmussen MA, Basten CJ: Sampling theory for cytonuclear disequilibria. Genetics 1994, 138:1351-1363.
  • [48]Rousset F: Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 2008, 8:103-106.
  • [49]Raymond M, Rousset F: GENEPOP (Ver. 1.2): population genetics software for exact tests and ecumenicism. J Hered 1995, 86:248-249.
  • [50]Hey J: Isolation with migration models for more than two populations. Mol Biol Evol 2010, 27:905-920.
  • [51]Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, et al.: Geneious v5.4. 2011. Available from http://www.geneious.com webcite
  • [52]Bandelt H-J, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
  • [53]Anderson EC, Thompson EA: A model-based method for identifying species hybrids using multilocus genetic data. Genetics 2002, 160:1217-1229.
  • [54]Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001, 68(4):978-989.
  • [55]Stephens M, Donnelly P: A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 2003, 73:1162-1169.
  • [56]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-959.
  • [57]Hubisz MJ, Falush D, Stephens M, Pritchard JK: Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 2009, 9:1322-1332.
  • [58]Rice WR: Analyzing tables of statistical tests. Evolution 1989, 43:223-225.
  • [59]Gelman A: Bayesian model building by pure thought. Some principals and examples. Statista Sinica 1996, 6:215-232.
  • [60]Vähä J, Primmer CR: Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 2006, 15:63-72.
  • [61]Olivera R, Godinho R, Randi E, Ferrand N, Alves PC: Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conserv Genet 2008, 9:1-11.
  • [62]Hey J, Nielsen R: Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 2004, 167(2):747-760.
  • [63]Hey J, Nielsen R: Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 2007, 104(8):2785-2790.
  • [64]Nielsen R, Wakeley J: Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 2001, 158:885-896.
  • [65]Desbruyères D, Segonzac M, Bright M: Handbook of Deep-Sea Hydrothermal Vent Fauna. Brest. France: Zugleich Kataoge der Oberöstereichischen Lanmuseen; 2006:N.S. 43.
  • [66]von Cosel R, Comtet T, Krylova E: Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents on the Azores triple junction and the Logatchev hydrothermal field, Mid-Atlantic ridge. Veliger 1999, 42(3):218-248.
  • [67]von Cosel R, Métivier B, Hashimoto J: Three new species of Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the Lau basin and the Fiji basin, western Pacific, and the Snake Pit area Mid-Atlantic ridge. Veliger 1994, 37:374-392.
  • [68]Maas PAY, O’Mullan GD, Lutz RA, Vrijenhoek RC: Genetic and morphometric characterization of mussels (Bivalvia: Mytilidae) from Mid-Atlantic hydrothermal vents. Biol Bull 1999, 196:265-272.
  • [69]Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC: Evolution of habitat use by deep-sea mussels. Mar Biol 2006, 148(4):841-851.
  • [70]de Queiroz K: Species concepts and species delimitation. Syst Biol 2007, 56(6):879-886.
  • [71]Duperron S: The Diversity of Deep-Sea Mussels and Their Bacterial Symbioses. Dordrecht: Springer, Netherlands; 2010:137-167. [Topics in Geobiology. vol. 33]
  • [72]Petersen JM, Zielinski FU, Pape T, Seifert R, Moraru C, Amann R, Hourdez S, Girguis PR, Wankel SD, Barbe V, et al.: Hydrogen is an energy source for hydrothermal vent symbioses. Nature 2011, 476(7359):176-180.
  • [73]van der Heijden K, Petersen JM, Dubilier N, Borowski C: Genetic connectivity between north and south Mid-Atlantic ridge chemosynthetic bivalves and their symbionts. PLoS One 2012, 7(7):e39994.
  • [74]Hey R, Massoth G, Vrijenhoek R, Rona P, Lupton J, Butterfield D: Hydrothermal vent geology and biology at Earth’s fastest spreading rates. Mar Geophys Res 2006, 27:137-153.
  • [75]Key KHL: The concept of stasipatric speciation. Syst Zool 1968, 17:14-22.
  • [76]Bazykin AD: Hypothetical mechanism of speciation. Evolution 1969, 23:685-687.
  • [77]Dowling TE, Moore WS: Evidence for selection against hybrids in the family Cyprinidae (genus Notropis). Evolution 1985, 39:152-158.
  • [78]Nei M, Li WH: Linkage disequilibrium in subdivided populations. Genetics 1973, 75:213-219.
  • [79]Craddock C, Hoeh WR, Lutz RA, Vrijenhoek RC: Extensive gene flow in the deep-sea hydrothermal vent mytilid Bathymodiolus thermophilus. Mar Biol 1995, 124:137-146.
  • [80]Shank TM, Halanych KM: Toward a mechanistic understanding of larval dispersal: insights from genomic fingerprinting of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Marine Ecology 2007, 28(1):25-35.
  • [81]Thaler AD, Zelnio K, Saleu W, Schultz TF, Carlsson J, Cunningham C, Vrijenhoek RC, Dover CLV: The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific. BMC Evol Biol 2012, 11(11):372.
  • [82]Rusby RI, Searle RC: A history of the Easter Microplate, 5.25 Ma to present. J Geophys Res 1995, 100(B7):12,617-12,640.
  • [83]Naar DF, Hey RN: Tectonic evolution of the Easter Microplate. J Geophys Res 1991, 96:7961-7993.
  • [84]Pamilo P, Nei M: Relationships between gene trees and species trees. Evolution 1988, 5:568-583.
  • [85]Machado CA, Hey J: The causes of phylogenetic conflict in a classic Drosophila species group. Proceedings of the Royal Society B: Biological Sciences 2003, 270:1193-1202.
  • [86]Jollivet D, Chevaldonné P, Planque B: Hydrothermal-vent alvinellid polychaete dispersal in the Eastern Pacific. 2. A metapopulation model based on habitat shifts. Evolution 1999, 53:1143-1156.
  • [87]Barton NH: The dynamics of hybrid zones. Heredity 1979, 43:341-359.
  • [88]Hewitt G, Barton N: The structure and maintenance of hybrid zones as exemplified by Podisma pedestris. In Insect cytogenetics. Edited by Blackman RL, Hewitt GM, Ashburner M. Oxford: Blackwell Scientific; 1980:149-169.
  • [89]Harrison R: Hybrid zones: windows on evolutionary process. Oxf Surv Evol Biol 1990, 7:69-128.
  • [90]MacDonald KC: Linkages between faulting, volcanism, hydrothermal activity and segmentation on fast spreading centers. In Faulting and Magmatism at Mid-Ocean Ridges. Edited by Buck W, Delaney P, Karson J, Lagabrielle Y. Washington, DC: American Geophysical Union; 1998:27-58.
  • [91]Lupton JE: Hydrothermal helium plumes in the Pacific Ocean. Journal of Geophysical Research-Oceans 1998, 103:15853-15868.
  • [92]Van Dover CL: Community structure of mussel beds at deep-sea hydrothermal vents. MEPS 2002, 230:137-158.
  • [93]Marsh AG, Mullineaux LS, Young CM, Manahan DT: Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 2001, 411(3):77-80.
  • [94]Adams DK, Flierl GR: Modeled interactions of mesoscale eddies with the East Pacific Rise: Implications for larval dispersal. Deep-Sea Research Part I 2010, 57(10):1163-1176.
  • [95]Adams DK, McGillicuddy DJ, Zamudio L, Thurnherr AM, Liang X, Rouxel O, German CR, Mullineaux LS: Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 2011, 332:580-583.
  • [96]Mullineaux LS, Speer KG, Thurnherr AM, Maltrud ME, Vangriesheim A: Implications of cross-axis flow for larval dispersal along mid-ocean ridges. Cahiers De Biologie Marine 2002, 43(3–4):281-284.
  • [97]Lutz RA, Jablonski D, Rhoads DC, Turner RD: Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift. Mar Biol 1980, 57(1100):127-133.
  • [98]Won Y-J, Jones WJ, Vrijenhoek RC: Absence of co-speciation between deep-sea mytilids and their thiotrophic endosymbionts. J Shellfish Res 2008, 27(1):129-138.
  • [99]Won Y-J, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoek RC: Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 2003, 69(11):6785-6792.
  • [100]Bergstrom CT, Lachmann M: The Red King effect: When the slowest runner wins the coevolutionary race. Proc Natl Acad Sci USA 2003, 100(2):593-598.
  • [101]Sachs JL, Essenberg CJ, Turcotte MM: New paradigms for the evolution of beneficial infections. Trends Ecol Evol 2011, 26(4):202-209.
  文献评价指标  
  下载次数:3次 浏览次数:10次