期刊论文详细信息
BMC Research Notes
CoreGenes3.5: a webserver for the determination of core genes from sets of viral and small bacterial genomes
Padmanabhan Mahadevan3  Donald Seto2  Darren Reynolds1  Dann Turner1 
[1] Centre for Research in Biosciences, Faculty of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK;Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA;Department of Biology, University of Tampa, Tampa, FL, 33606, USA
关键词: Data mining;    Viral genomics;    Taxonomy;    Bacteriophage;    Core genes;   
Others  :  1142964
DOI  :  10.1186/1756-0500-6-140
 received in 2012-11-17, accepted in 2013-03-25,  发布年份 2013
PDF
【 摘 要 】

Background

CoreGenes3.5 is a webserver that determines sets of core genes from viral and small bacterial genomes as an automated batch process. Previous versions of CoreGenes have been used to classify bacteriophage genomes and mine data from pathogen genomes.

Findings

CoreGenes3.5 accepts as input GenBank accession numbers of genomes and performs iterative BLASTP analyses to output a set of core genes. After completion of the program run, the results can be either displayed in a new window for one pair of reference and query genomes or emailed to the user for multiple pairs of small genomes in tabular format.

Conclusions

With the number of genomes sequenced increasing daily and interest in determining phylogenetic relationships, CoreGenes3.5 provides a user-friendly web interface for wet-bench biologists to process multiple small genomes for core gene determinations. CoreGenes3.5 is available at http://binf.gmu.edu:8080/CoreGenes3.5 webcite.

【 授权许可】

   
2013 Turner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328204633888.pdf 852KB PDF download
Figure 3. 183KB Image download
Figure 2. 58KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Liang W, Zhao Y, Chen C, Cui X, Yu J, Xiao J, Kan B: Pan-Genomic analysis provides insights into the genomic variation and evolution of Salmonella Paratyphi A. PLoS One 2012, 7:e45346.
  • [2]Garavaglia MJ, Miele SAB, Iserte JA, Belaich MN, Ghiringhelli PD: The ac53, ac78, ac101 and ac103 are newly discovered core genes in the family Baculoviridae. J Virol 2012, 86:12069-12079.
  • [3]Yutin N, Koonin EV: Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virol J 2012, 9:161.
  • [4]Mahadevan P, King JF, Seto D: Data mining pathogen genomes using GeneOrder and CoreGenes and CGUG: gene order, synteny and in silico proteomes. Int J Comput Biol Drug Des 2009, 2:100-114.
  • [5]Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY: The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 2006, 103:13126-13131.
  • [6]Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM: Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009, 9:224.
  • [7]Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM: Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008, 159:406-414.
  • [8]Mahadevan P, Seto D: Taxonomic parsing of bacteriophages using core genes and in silico proteome-based CGUG and applications to small bacterial genomes. Adv Exp Med Biol 2010, 680:379-385.
  • [9]Zafar N, Mazumder R, Seto D: CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinforma 2002, 3:12.
  • [10]Mahadevan P, King JF, Seto D: CGUG: in silico proteome and genome parsing tool for the determination of “core” and unique genes in the analysis of genomes up to ca. 1.9 Mb. BMC Res Notes 2009, 2:168.
  • [11]Shao Y, He X, Harrison EM, Tai C, Ou H-Y, Rajakumar K, Deng Z: mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res 2010, 38:W194-200.
  • [12]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23:1061-1067.
  • [13]Yao J, Lin H, Doddapaneni H, Civerolo EL: nWayComp: a genome-wide sequence comparison tool for multiple strains/species of phylogenetically related microorganisms. In Silico Biol (Gedrukt) 2007, 7:195-200.
  • [14]Lu G, Jiang L, Helikar RMK, Rowley TW, Zhang L, Chen X, Moriyama EN: GenomeBlast: a web tool for small genome comparison. BMC Bioinforma 2006, 7(Suppl 4):S18.
  • [15]Kaluszka A, Gibas C: Interactive gene-order comparison for multiple small genomes. Bioinformatics 2004, 20:3662-3664.
  • [16]Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann H-W, Kropinski AM, Boerlin P: Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 2012, 4:471-487.
  • [17]Kropinski AM, Van den Bossche A, Lavigne R, Noben J-P, Babinger P, Schmitt R: Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3. Virol J 2012, 9:102.
  • [18]Lehman SM, Kropinski AM, Castle AJ, Svircev AM: Complete genome of the broad-host-range Erwinia amylovora phage phiEa21-4 and its relationship to Salmonella phage felix O1. Appl Environ Microbiol 2009, 75:2139-2147.
  • [19]Villegas A, She Y-M, Kropinski AM, Lingohr EJ, Mazzocco A, Ojha S, Waddell TE, Ackermann H-W, Moyles DM, Ahmed R, Johnson RP: The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J 2009, 6:41.
  • [20]Celamkoti S, Kundeti S, Purkayastha A, Mazumder R, Buck C, Seto D: GeneOrder3.0: software for comparing the order of genes in pairs of small bacterial genomes. BMC Bioinforma 2004, 5:52.
  • [21]Mahadevan P, Seto D: Rapid pair-wise synteny analysis of large bacterial genomes using web-based GeneOrder4.0. BMC Res Notes 2010, 3:41.
  文献评价指标  
  下载次数:15次 浏览次数:12次