期刊论文详细信息
BMC Genomics
Cohen’s h for detection of disease association with rare genetic variants
Jih-I Yeh1  Shu-Hui Wen2 
[1] Department of Family Medicine, Buddhist Tzu-Chi General Hospital, 707, Sec 3, Chung-Yang Rd, Hualien 97002, Taiwan;Department of Public Health, College of Medicine, Tzu-Chi University, 701, Sec 3, Chung-Yang Rd, Hualien 97004, Taiwan
关键词: Rare variant;    Power;    Odds ratio;    Cohen’s h;    Effect size;   
Others  :  1128500
DOI  :  10.1186/1471-2164-15-875
 received in 2014-06-20, accepted in 2014-10-03,  发布年份 2014
PDF
【 摘 要 】

Background

The power of the genome wide association studies starts to go down when the minor allele frequency (MAF) is below 0.05. Here, we proposed the use of Cohen’s h in detecting disease associated rare variants. The variance stabilizing effect based on the arcsine square root transformation of MAFs to generate Cohen’s h contributed to the statistical power for rare variants analysis. We re-analyzed published datasets, one microarray and one sequencing based, and used simulation to compare the performance of Cohen’s h with the risk difference (RD) and odds ratio (OR).

Results

The analysis showed that the type 1 error rate of Cohen’s h was as expected and Cohen’s h and RD were both less biased and had higher power than OR. The advantage of Cohen’s h was more obvious when MAF was less than 0.01.

Conclusions

Cohen’s h can increase the power to find genetic association of rare variants and diseases, especially when MAF is less than 0.01.

【 授权许可】

   
2014 Wen and Yeh; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150224010559933.pdf 716KB PDF download
Figure 4. 33KB Image download
Figure 3. 60KB Image download
Figure 2. 40KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM: Finding the missing heritability of complex diseases. Nature 2009, 461:747-753.
  • [2]Asimit J, Zeggini E: Rare variant association analysis methods for complex traits. Annu Rev Genet 2010, 44:293-308.
  • [3]Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J: Complement factor H polymorphism in Age-Related Macular Degeneration. Science 2005, 308:385-389.
  • [4]The Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447(7145):661-678.
  • [5]Feng T, Zhu X: Genome-wide searching of rare genetic variants in WTCCC data. Hum Genet 2010, 128(3):269-280.
  • [6]Schork NJ, Murray SS, Frazer KA, Topol EJ: Common vs rare allele hypotheses for complex diseases. Curr Opin Genet Dev 2009, 19(3):212-219.
  • [7]Hindorff LA, Sethupathy P, Junkins HA, Ramosa EM, Mehtac JP, Collins FS, Manolio TA: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009, 2009(106):9362-9367.
  • [8]Bodmer W, Bonilla C: Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 2008, 40(6):695-701.
  • [9]Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ: Testing for an unusual distribution of rare variants. PLoS Genet 2011, 7(3):e1001322. doi:10.1371/journal.pgen.1001322
  • [10]Cirulli ET, Goldstein DB: Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 2010, 11:415-425.
  • [11]Dickson SP, Wang K, Krantz I, Hakonarson K, Goldstein DB: Rare variants create synthetic genome-wide associations. PLoS Biol 2010, 8(1):e1000294. doi:10.1371/journal.pbio.1000294
  • [12]Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N: Estimation of ES distribution from genome-wide association studies and implications for future discoveries. Nat Genet 2010, 42(7):570-575.
  • [13]The 1000 Genomes Project Consortium: An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491:56-65.
  • [14]Morgenthaler S, Thilly WG: A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A cohort allelic sums test (CAST). Mutat Res 2007, 615:28-56.
  • [15]Li B, Leal SM: Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 2008, 83:311-321.
  • [16]Madsen BE, Browning SR: A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 2009, 5(2):e1000384. doi:10.1371/journal.pgen.1000384
  • [17]Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR: Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 2010, 86:832-838.
  • [18]Feng T, Elston RC, Zhu X: Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS). Genet Epidemiol 2011, 35:398-409.
  • [19]Han F, Pan W: A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 2010, 70:42-54.
  • [20]Hoffman TJ, Marini NJ, Witte JS: Comprehensive approach to analyzing rare genetic variants. PLoS ONE 2011, 5(11):e13584. doi:10.1371/journal.pone. 0013584
  • [21]Garner C: Upward bias in odds ratio estimates from Genome-wide association studies. Genet Epidemiol 2007, 31:288-295.
  • [22]Rücker G, Schwarzer G, Carpenter J, Olkin I: Why add anything to nothing? The arcsine difference as a measure of treatment effect in meta-analysis with zero cells. Stat Med 2009, 28:721-738.
  • [23]Wei YC, Wen SH, Chen PC, Wang CH, Hsiao CK: A simple Bayesian mixture model with a hybrid procedure for genome-wide association studies. Eur J Hum Genet 2010, 18(8):942-947.
  • [24]Spencer C, Hechter E, Vukcevic D, Donnelly P: Quantifying the underestimation of relative risks from Genome-wide association studies. PLoS Genet 2011, 7(3):e1001337. doi:10.1371/journal.pgen.1001337
  • [25]Park JH, Gail MH, Weinberg CR, Carroll RJ, Chung CC, Wang Z, Chanock SJ, Fraumeni JF, Chatterjee N: Distribution of allele frequencies and ESs and their interrelationships for common genetic susceptibility variants. Proc Natl Acad Sci U S A 2011, 108(44):18026-18031.
  • [26]Cohen J: Statistical Power Analysis for the Behavioral Sciences. 2nd edition. Hinsdale, NJ: Lawrence Erlbaum Associates; 1988:181-185.
  • [27]Li B, Wang G, Leal SM: SimRare: a program to generate and analyze sequence-based data for association studies of quantitative and qualitative traits. Bioinformatics 2012, 28(20):2703-2704.
  • [28]Kryukov GV, Shpunt A, Stamatoyannopoulos JA, Sunyaev SR: Power of deep, all-exon resequencing for discovery of human trait genes. Proc Natl Acad Sci U S A 2009, 106:3871-3876.
  • [29]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995, 57:289-300.
  • [30]Nejentsev S, Walker N, Riches D, Egholm M, Todd JA: Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009, 324:387-389.
  • [31]Cunnington MS, Mayosi BM, Hall DH, Avery PJ, Farrall M, Vickers MA, Watkins H, Keavney B: Novel genetic variants linked to coronary artery disease by genome-wide association are not associated with carotid artery intima-media thickness or intermediate risk phenotypes. Atherosclerosis 2009, 203(1):41-44.
  • [32]Kathiresan S, Srivastava D: Genetics of human cardiovascular disease. Cell 2012, 148:1242-1257.
  • [33]Torkamani A, Topol EJ, Schork NJ: Pathway analysis of seven common diseases assessed by genome-wide association. Genomics 2008, 92(5):265-272.
  • [34]Kaess BM, Tomaszewski M, Braund PS, Stark K, Rafelt S, Fischer M, Hardwick R, Nelson CP, Debiec R, Huber F, Kremer W, Kalbitzer HR, Rose LM, Chasman DI, Hopewell J, Clarke R, Burton PR, Tobin MD, Hengstenberg C, Samani NJ: Large-scale candidate gene analysis of HDL particle features. PLoS ONE 2011, 6(1):e14529. doi:10.1371/journal.pone.0014529
  • [35]Zhang J, Liu H, Liu Z, Liao Y, Guo L, Wang H, He L, Zhang X, Xing Q: A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1. PLoS ONE 2013, 8(1):e53981. doi:10.1371 /journal.pone.0053981
  • [36]Herold KC, Vignali DAA, Cooke A, Bluestone JA: Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nat Rev Immunol 2013, 13:243-256.
  • [37]Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C: The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab 2013, 15(Suppl. 3):89-97.
  • [38]Stringer S, Wray NR, Kahn RS, Derks EM: Underestimated ESs in GWAS: fundamental limitations of single SNP analysis for dichotomous phenotypes. PLoS ONE 2011, 6(11):e27964. doi:10.1371/journal.pone.0027964
  • [39]Lee S, Abecasis GR, Boehnke M, Lin X: Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 2014, 95(1):5-23.
  • [40]Liu DJ, Peloso GM, Zhan X, Holmen O, Zawitowski M, Feng S, Nikpay M, Auer PL, Goel A, Zhang H, Peters U, Farrall M, Orho-Melander M, Kooperberg C, McPherson R, Watkins H, Willer CJ, Hveem K, Melander O, Kathiresan S, Abecasis GR: Meta-analysis of gene-level tests for rare variant association. Nat Genet 2014, 46:200-204.
  • [41]Evangelou E, Ioannidis JPA: Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 2013, 14:379-389.
  文献评价指标  
  下载次数:45次 浏览次数:6次