期刊论文详细信息
BMC Microbiology
Investigation of a new acetogen isolated from an enrichment of the tammar wallaby forestomach
Christopher S McSweeney3  Stuart E Denman3  Mark Morrison3  Rafat Al Jassim4  Richard I Webb5  Jianxin Liu2  Isabela Pena Carvalho de Carvalho1  Jing Liu2  Jagadish Padmanabha3  Jiakun Wang2  Emma J Gagen4 
[1] Faculty of Agricultural & Veterinary Sciences, Universidade Estadual Paulista, Campus de Jaboticabal, Brazil;Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China;CSIRO Agriculture, St Lucia, Australia;School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia;Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Australia
关键词: Methanogenesis;    Rumen;    Tammar wallaby;    Acetogenesis;    Acetogen;   
Others  :  1131221
DOI  :  10.1186/s12866-014-0314-3
 received in 2014-04-17, accepted in 2014-11-26,  发布年份 2014
PDF
【 摘 要 】

Background

Forestomach fermentation in Australian marsupials such as wallabies and kangaroos, though analogous to rumen fermentation, results in lower methane emissions. Insights into hydrogenotrophy in these systems could help in devising strategies to reduce ruminal methanogenesis. Reductive acetogenesis may be a significant hydrogen sink in these systems and previous molecular analyses have revealed a novel diversity of putative acetogens in the tammar wallaby forestomach.

Results

Methanogen-inhibited enrichment cultures prepared from tammar wallaby forestomach contents consumed hydrogen and produced primarily acetate. Functional gene (formyltetrahydrofolate synthetase and acetyl-CoA synthase) analyses revealed a restricted diversity of Clostridiales species as the putative acetogens in the cultures. A new acetogen (growth on H2/CO2 with acetate as primary end product) designated isolate TWA4, was obtained from the cultures. Isolate TWA4 classified within the Lachnospiraceae and demonstrated >97% rrs identity to previously isolated kangaroo acetogens. Isolate TWA4 was a potent hydrogenotroph and demonstrated excellent mixotrophic growth (concomitant consumption of hydrogen during heterotrophic growth) with glycerol. Mixotrophic growth of isolate TWA4 on glycerol resulted in increased cell densities and acetate production compared to autotrophic growth. Co-cultures with an autotrophic methanogen Methanobrevibacter smithii revealed that isolate TWA4 performed reductive acetogenesis under high hydrogen concentration (>5 mM), but not at low concentrations. Under heterotrophic growth conditions, isolate TWA4 did not significantly stimulate methanogenesis in a co-culture with M. smithii contrary to the expectation for organisms growing fermentatively.

Conclusions

The unique properties of tammar wallaby acetogens might be contributing factors to reduced methanogen numbers and methane emissions from tammar wallaby forestomach fermentation, compared to ruminal fermentation. The macropod forestomach may be a useful source of acetogens for future strategies to reduce methane emissions from ruminants, particularly if these strategies also include some level of methane suppression and/or acetogen stimulation, for example by harnessing mixotrophic growth capabilities

【 授权许可】

   
2014 Gagen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150301023135657.pdf 2077KB PDF download
Figure 7. 47KB Image download
Figure 6. 18KB Image download
Figure 5. 55KB Image download
Figure 4. 47KB Image download
Figure 3. 39KB Image download
Figure 2. 63KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Moss AR, Jouany J-P, Newbold J: Methane production by ruminants: its contribution to global warming. Ann Zootech 2000, 49:231-253.
  • [2]Thorpe A: Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Clim Change 2009, 93:407-431.
  • [3]Johnson KA, Johnson DE: Methane emissions from cattle. J Anim Sci 1995, 73:2483-2492.
  • [4]Kempton TJ, Murray RM, Leng RA: Methane production and digestibility measurements in the grey kangaroo and sheep. Aust J Biol Sci 1976, 29:209-214.
  • [5]Dellow DW, Hume ID, Clarke RTJ, Bauchop T: Microbial activity in the forestomach of free-living macropodid marsupials: comparisons with laboratory studies. Aust J Zool 1988, 36:383-395.
  • [6]von Engelhardt W, Wolter S, Lawrenz H, Hemsley JA: Production of methane in two non-ruminant herbivores. Comp Biochem Physiol 1978, 60:309-311.
  • [7]Attwood G, McSweeney CS: Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen. Aust J Exp Agric 2008, 48:28-37.
  • [8]Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS: Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 2010, 76:7785-7795.
  • [9]Ouwerkerk D, Maguire AJ, Klieve AV: Reductive Acetogenesis in the Foregut of Macropod Marsupials in Australia. In 2nd International Conference on Greenhouse Gases and Animal Agriculture 20–24 Sep. 2005; Zurich, Switzerland. Edited by Soliva CR, Takahashi J, Kreuzer M. Elsevier, Amsterdam; 2006:98-101.
  • [10]Ouwerkerk D, Maguire AJ, McMillen L, Klieve AV: Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) kangaroos. Anim Prod Sci 2009, 49:1043-1051.
  • [11]Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW: The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 2008, 10:2550-2573.
  • [12]da Silva GP, Mack M, Jonas C: Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27:30-39.
  • [13]Breznak JA, Blum JS: Mixotrophy in the termite gut acetogen, Sporomusa termitida. Arch Microbiol 1991, 156:105-110.
  • [14]Morvan B, Fonty G: Mixotrophy by rumen acetogenic bacteria in the utilization of hydrogen and sugars. Ann Zootech 1996, 45:354.
  • [15]Joblin KN: Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res 1999, 50:1307-1313.
  • [16]Drake HL, Gößner AS, Daniel SL: Old acetogens, new light. Ann N Y Acad Sci 2008, 1125:100-128.
  • [17]Maru BT, Bielen AAM, Constanti M, Medina F, Kengen SWM: Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations. Int J Hydrogen Energy 2013, 38:5563-5572.
  • [18]Ellis JL, Dijkstra J, Kebreab E, Bannink A, Odongo NE, McBride BW, France J: Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle. J Agr Sci 2008, 146:213-233.
  • [19]Ungerfeld EM, Kohn RA: The Role of Thermodynamics in the Control of Ruminal Fermentation. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress. Edited by Sejrsen K, Hvelpund T, Nielsen MO. Wageningen Academic Publishers, Wageningen, The Netherlands; 2004:55-85.
  • [20]Fonty G, Joblin KN, Chavarot M, Roux R, Naylor GE, Michallon F: Methanogen-free lambs: establishment and development of ruminal hydrogenotrophs. Appl Environ Microbiol 2007, 73:6391-6403.
  • [21]Mitsumori M, Matsui H, Tajima K, Shinkai T, Takenaka A, Denman SE, McSweeney CS: Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen. Anim Sci J 2014, 85:25-31.
  • [22]Morvan B, Rieu-Lesme F, Fonty G, Gouet P: In vitro interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 1996, 2:175-180.
  • [23]Nollet L, Demeyer D, Verstraete W: Effect of 2-bromoethansulfonic acid and Peptostreptococcus productus ATCC 35244 addition on stimulation of reductive acetogensis in the ruminal ecosystem by selective inhibition of methanogenesis. Appl Environ Microbiol 1997, 63:194-200.
  • [24]Evans PN, Hinds LA, Sly L, McSweeney CS, Morrison M, Wright A-DG: Community composition and density of methanogens in the foregut of the Tammar wallaby (Macropus eugenii). Appl Environ Microbiol 2009, 75:2598-2602.
  • [25]Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P, McSweeney CS, McHardy AC, Morrison M: Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011, 333:646-648.
  • [26]McSweeney CS, Denman SE, Mackie RI: Rumen Bacteria. In Methods in Gut Microbial Ecology for Ruminants. Edited by Makkar HPS, McSweeney CS. Springer, The Netherlands; 2005:23-37.
  • [27]Greening RC, Leedle JAZ: Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch Microbiol 1989, 151:399-406.
  • [28]Hungate RE: A Roll Tube Method for Cultivation of Strict Anaerobes. In Methods in Microbiology. Volume 3B. Edited by Norris JR, Ribbons DW. Academic Press, New York; 1969:117-132.
  • [29]Keller-Lehman B, Corrie SK, Ravn R, Yuan Z, Keller J: Preservation and Simultaneous Analysis of Relevant Soluble Sulfur Species in Sewage Samples. In 2nd International IWA Conference on Sewer Operation and Maintenance: 26–28 Oct; Vienna, Austria. Edited by Ertl T, Pressl A, Kretschmer F, Haberl R. SIG Eigenverlag, Austria; 2006:339-346.
  • [30]Brookman JL, Nicholson MJ: Anaerobic Fungal Populations. In Methods in Gut Microbial Ecology for Ruminants. Edited by Makkar HPS, McSweeney CS. Springer, Netherlands; 2005:139-150.
  • [31]Lane DJ: 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematics. Edited by Stackebrandt E, Goodfellow M. Wiley, London; 1991:115-175.
  • [32]Gagen EJ, Mosoni P, Denman SE, Al Jassim R, McSweeney CS, Forano E: Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically. Microb Ecol 2012, 64:628-640.
  • [33]Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM MST, Garrity GM, Tiedje JM: The Ribosomal Database Project (RDP-II) previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 2003, 31:442-443.
  • [34]DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006, 72:5069-5072.
  • [35]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75:7537-7541.
  • [36]Stackebrandt E, Goebel BM: Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994, 44:846-849.
  • [37]Leaphart AB, Lovell CR: Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria. Appl Environ Microbiol 2001, 67:1392-1395.
  • [38]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, et al: ARB: a software environment for sequence data.Nucleic Acids Res 2004, 32:1363–1371.
  • [39]Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
  • [40]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE): 14 Nov. 2010. IEEE, New Orleans, LA; 2010:1-8.
  • [41]Jones DT, Taylor WR, Thornton JM: A new approach to protein fold recognition. Nature 1992, 358:86-89.
  • [42]Henderson G, Naylor GE, Leahy SC, Janssen PH: Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 2010, 76:2058-2066.
  • [43]Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press, New York; 2001.
  • [44]Buck JD: Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982, 44:992-993.
  • [45]McDonald KL, Webb RI: Freeze substitution in 3 hours or less. J Microsc 2011, 243:227-233.
  • [46]Reynolds ES: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963, 17:208-212.
  • [47]Pope PB, Denman SE, Jones M, Tringe SG, Barry K, Malfatti SA, McHardy AC, Cheng J-F, Hugenholtz P, McSweeney CS, Morrison M: Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 2010, 107:14793-14798.
  • [48]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  文献评价指标  
  下载次数:164次 浏览次数:20次