期刊论文详细信息
BMC Evolutionary Biology
Positive selection in the adhesion domain of Mus sperm Adam genes through gene duplications and function-driven gene complex formations
Alberto Civetta2  Phil Grayson1 
[1]Current Address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
[2]Department of Biology, University of Winnipeg, Winnipeg, Canada
关键词: Rodents;    Neofunctionalization;    Sperm;    Adam genes;    Positive selection;   
Others  :  1085774
DOI  :  10.1186/1471-2148-13-217
 received in 2013-06-07, accepted in 2013-09-26,  发布年份 2013
PDF
【 摘 要 】

Background

Sperm and testes-expressed Adam genes have been shown to undergo bouts of positive selection in mammals. Despite the pervasiveness of positive selection signals, it is unclear what has driven such selective bouts. The fact that only sperm surface Adam genes show signals of positive selection within their adhesion domain has led to speculation that selection might be driven by species-specific adaptations to fertilization or sperm competition. Alternatively, duplications and neofunctionalization of Adam sperm surface genes, particularly as it is now understood in rodents, might have contributed to an acceleration of evolutionary rates and possibly adaptive diversification.

Results

Here we sequenced and conducted tests of selection within the adhesion domain of sixteen known sperm-surface Adam genes among five species of the Mus genus. We find evidence of positive selection associated with all six Adam genes known to interact to form functional complexes on Mus sperm. A subset of these complex-forming sperm genes also displayed accelerated branch evolution with Adam5 evolving under positive selection. In contrast to our previous findings in primates, selective bouts within Mus sperm Adams showed no associations to proxies of sperm competition. Expanded phylogenetic analysis including sequence data from other placental mammals allowed us to uncover ancient and recent episodes of adaptive evolution.

Conclusions

The prevailing signals of rapid divergence and positive selection detected within the adhesion domain of interacting sperm Adams is driven by duplications and potential neofunctionalizations that are in some cases ancient (Adams 2, 3 and 5) or more recent (Adams 1b, 4b and 6).

【 授权许可】

   
2013 Grayson and Civetta; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113180427543.pdf 252KB PDF download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Voight BF, Kudaravalli S, Wen X, Pritchard JK: A map of recent positive selection in the human genome. PLoS Biol 2006, 4:446-458.
  • [2]Kosiol C, Vinar T, Da Fonseca RR, Hubisz MJ, Bustamante CD, Siepel A: Patterns of positive selection in six mammalian genomes. PLoS Genet 2008, 4:e1000144.
  • [3]Koonin EV, Wolf YI: Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 2010, 11:487-498.
  • [4]Swanson WJ, Vacquier VD: The rapid evolution of reproductive proteins. Genetics 2002, 3:137-144.
  • [5]Civetta A: Shall we dance or shall we fight? Using DNA sequence data to untangle controversies surrounding sexual selection. Genome 2003, 46:925-929.
  • [6]Clark NL, Aagaard JE, Swanson WJ: Evolution of reproductive proteins from animals and plants. Reproduction 2006, 131:11-22.
  • [7]Panhuis TM, Clark NL, Swanson WJ: Rapid evolution of reproductive proteins in abalone and Drosophila. Philos T Roy Soc B 2006, 361:261-268.
  • [8]Turner LM, Hoekstra HE: Causes and consequences of the evolution of reproductive proteins. Int J Dev Biol 2008, 52:769-780.
  • [9]Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL: Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol 2010, 27:1235-1246.
  • [10]Civetta A: Positive selection within sperm-egg adhesion domains of fertilin: an ADAM gene with a potential role in fertilization. Mol Biol Evol 2003, 20:21-29.
  • [11]Glassey B, Civetta A: Positive selection at reproductive ADAM genes with potential intercellular binding activity. Mol Biol Evol 2004, 21:851-859.
  • [12]Finn S, Civetta A: Sexual selection and the molecular evolution of ADAM proteins. J Mol Evol 2010, 71:231-240.
  • [13]Morgan CC, Loughran NB, Walsh T, Harrison AJ, O’Connell MJ: Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins. BMC Evol Biol 2010, 10:17. BioMed Central Full Text
  • [14]Wong A: The molecular evolution of animal reproductive tract proteins: what have we learned from mating-system comparisons? Int J Evol Biol 2011, 2011:9. Article ID 908735
  • [15]Breed WG, Taylor J: Body mass, testes mass, and sperm size in murine rodents. J Mammal 2000, 81:758-768.
  • [16]Gomendio M, Martin-Coello J, Crespo C, Magaña C, Roldan ERS: Sperm competition enhances functional capacity. P Natl Acad Sci USA 2006, 103:15113-15117.
  • [17]Montoto LG, Magaña C, Tourmente M, Martín-Coello J, Crespo C, Luque-Larena JJ, Gomendio M, Roldan ERS: Sperm competition, sperm numbers and sperm quality in muroid rodents. PloS One 2011, 6:e18173.
  • [18]Moore H, Dvorakova K, Jenkins N, Breed W: Exceptional sperm cooperation in the wood mouse. Nature 2002, 418:174-177.
  • [19]Fisher HS, Hoekstra HE: Competition drives cooperation among closely related sperm of deer mice. Nature 2010, 463:801-803.
  • [20]Han C, Kwon JT, Park I, Lee B, Jin S, Choi H, Cho C: Impaired sperm aggregation in Adam2 and Adam3 null mice. Fertil Steril 2010, 93:2754-2756.
  • [21]Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W: Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 1999, 61:1445-1451.
  • [22]Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P: Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 2001, 233:204-213.
  • [23]Yamaguchi R, Muro Y, Isotani A, Tokuhiro K, Takumi K, Adham I, Ikawa M, Okabe M: Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol Reprod 2009, 81:142-146.
  • [24]Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG: Fertilization defects in sperm from mice lacking fertilin beta. Science 1998, 281:1857-1879.
  • [25]Nishimura H, Kim E, Nakanishi T, Baba T: Possible function of the ADAM1a/ADAM2 Fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem 2004, 279:34957-34962.
  • [26]Kim E, Yamashita M, Nakanishi T, Park K-E, Kimura M, Kashiwabara S, Baba T: Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem 2006, 281:5634-5639.
  • [27]Cho C: Testicular and epididymal ADAMs: expression and function during fertilization. Nat Rev Urol 2012, 9:550-560.
  • [28]Huxley-Jones J, Clarke T-K, Beck C, Toubaris G, Robertson DL, Boot-Handford RP: The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol Biol 2007, 7:20. BioMed Central Full Text
  • [29]Long J, Li M, Ren Q, Zhang C, Fan J, Duan Y, Chen J, Li B, Deng L: Phylogenetic and molecular evolution of the ADAM (a disintegrin and metalloprotease) gene family from xenopus tropicalis, to Mus musculus, rattus norvegicus, and homo sapiens. Gene 2012, 507:36-43.
  • [30]Grayson P, Civetta A: Positive selection and the evolution of izumo genes in mammals. Int J Evol Biol 2012, 2012:7. Article ID 958164
  • [31]Thompson J, Higgins D, Gibson T: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [32]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [33]Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics 2005, 21:2104-2105.
  • [34]Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985, 39:783-791.
  • [35]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [36]Yang Z, Wong WSW, Nielsen R: Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22:1107-1118.
  • [37]Gu X: Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 1999, 16:1664-1674.
  • [38]Gu X, Vander Velden K: DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002, 18:500-501.
  • [39]Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee Z, Zeng Y: An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 2013, 30:1713-1719.
  • [40]Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA: TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 2003, 19:671-672.
  • [41]Civetta A: Fast evolution of reproductive genes: when is selection sexual? In Rapidly evolving genes and genetic systems. Edited by Singh R, Xu J, Kulathinal R. Oxford, UK: Oxford University Press; 2012:165-175.
  • [42]Maere S, Van de Peer Y: Duplicate retention after small- and large-scale duplications. In Evolution after gene duplication. Edited by Dittmar K, Liberles D. Hoboken, NJ: John Wiley & Sons Incorporated; 2010:31-57.
  • [43]Zhu G-Z, Gupta S, Myles DG, Primakoff P: Testase 1 (ADAM 24) a sperm surface metalloprotease is required for normal fertility in mice. Mol Reprod Dev 2009, 76:1106-1114.
  文献评价指标  
  下载次数:2次 浏览次数:7次