期刊论文详细信息
BMC Systems Biology
AMBIENT: Active Modules for Bipartite Networks - using high-throughput transcriptomic data to dissect metabolic response
John W Pinney1  Michael JE Sternberg1  William A Bryant1 
[1]Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, SW7 2AZ, UK
关键词: Network analysis;    Stress response;    High-throughput data;    Simulated annealing;    Metabolic networks;   
Others  :  1142948
DOI  :  10.1186/1752-0509-7-26
 received in 2012-09-21, accepted in 2013-03-01,  发布年份 2013
PDF
【 摘 要 】

Background

With the continued proliferation of high-throughput biological experiments, there is a pressing need for tools to integrate the data produced in ways that produce biologically meaningful conclusions. Many microarray studies have analysed transcriptomic data from a pathway perspective, for instance by testing for KEGG pathway enrichment in sets of upregulated genes. However, the increasing availability of species-specific metabolic models provides the opportunity to analyse these data in a more objective, system-wide manner.

Results

Here we introduce ambient (Active Modules for Bipartite Networks), a simulated annealing approach to the discovery of metabolic subnetworks (modules) that are significantly affected by a given genetic or environmental change. The metabolic modules returned by ambient are connected parts of the bipartite network that change coherently between conditions, providing a more detailed view of metabolic changes than standard approaches based on pathway enrichment.

Conclusions

ambient is an effective and flexible tool for the analysis of high-throughput data in a metabolic context. The same approach can be applied to any system in which reactions (or metabolites) can be assigned a score based on some biological observation, without the limitation of predefined pathways. A Python implementation of ambient is available at http://www.theosysbio.bio.ic.ac.uk/ambient webcite.

【 授权许可】

   
2013 Bryant et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328200852138.pdf 1174KB PDF download
Figure 2. 166KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34(3):267-273.
  • [2]Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 2002, 18(Suppl 1):S233—S240.
  • [3]Breitling R, Amtmann A, Herzyk P: Graph-based iterative group analysis enhances microarray interpretation. BMC Bioinformatics 2004, 5:100. BioMed Central Full Text
  • [4]Goffard N, Frickey T, Weiller G: PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways. Nucleic Acids Res 2009, 37(Web Server):W335—W339.
  • [5]Antonov AV, Dietmann S, Mewes HW: KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol 2008, 9(12):R179. BioMed Central Full Text
  • [6]Schramm G, Wiesberg S, Diessl N, Kranz AL, Sagulenko V, Oswald M, Reinelt G, Westermann F, Eils R, König R: PathWave: discovering patterns of differentially regulated enzymes in metabolic pathways. Bioinformatics 2010, 26(9):1225-1231.
  • [7]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  • [8]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40(Database issue):D109—D114.
  • [9]Caspi R, Foerster H, Fulcher CA, Kaipa P: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2008, 36(Database issue):D623—D631.
  • [10]Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010, 28(9):969-974.
  • [11]Croes D, Couche F, Wodak SJ, van Helden J: Inferring meaningful pathways in weighted metabolic networks. J Mol Biol 2006, 356:222-236.
  • [12]Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27(3):431-432.
  • [13]DeRisi JL: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278(5338):680-686.
  • [14]Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Klipp E, Palsson BØ Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB, Spasić I: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008, 26(10):1155-1160.
  • [15]Hubert L, Arabie P: Comparing partitions. J Classif 1985, 2:193-218.
  文献评价指标  
  下载次数:22次 浏览次数:28次