期刊论文详细信息
BMC Structural Biology
High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster
James C Whisstock1  Ruby HP Law1  Coral G Warr2  Travis K Johnson2  Michelle A Henstridge2  Qingwei Zhang1  Andrew M Ellisdon1 
[1] Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
关键词: Furin;    Drosophila;    Neuroserpin;    Serine protease inhibitor;    Serpin 4;    Serpin 42Da;   
Others  :  793060
DOI  :  10.1186/1472-6807-14-14
 received in 2014-02-28, accepted in 2014-04-17,  发布年份 2014
PDF
【 摘 要 】

Background

The Drosophila melanogaster Serpin 42 Da gene (previously Serpin 4) encodes a serine protease inhibitor that is capable of remarkable functional diversity through the alternative splicing of four different reactive centre loop exons. Eight protein isoforms of Serpin 42 Da have been identified to date, targeting the protease inhibitor to both different proteases and cellular locations. Biochemical and genetic studies suggest that Serpin 42 Da inhibits target proteases through the classical serpin ‘suicide’ inhibition mechanism, however the crystal structure of a representative Serpin 42 Da isoform remains to be determined.

Results

We report two high-resolution crystal structures of Serpin 42 Da representing the A/B isoforms in the cleaved conformation, belonging to two different space-groups and diffracting to 1.7 Å and 1.8 Å. Structural analysis reveals the archetypal serpin fold, with the major elements of secondary structure displaying significant homology to the vertebrate serpin, neuroserpin. Key residues known to have central roles in the serpin inhibitory mechanism are conserved in both the hinge and shutter regions of Serpin 42 Da. Furthermore, these structures identify important conserved interactions that appear to be of crucial importance in allowing the Serpin 42 Da fold to act as a versatile template for multiple reactive centre loops that have different sequences and protease specificities.

Conclusions

In combination with previous biochemical and genetic studies, these structures confirm for the first time that the Serpin 42 Da isoforms are typical inhibitory serpin family members with the conserved serpin fold and inhibitory mechanism. Additionally, these data reveal the remarkable structural plasticity of serpins, whereby the basic fold is harnessed as a template for inhibition of a large spectrum of proteases by reactive centre loop exon ‘switching’. This is the first structure of a Drosophila serpin reported to date, and will provide a platform for future mutational studies in Drosophila to ascertain the functional role of each of the Serpin 42 Da isoforms.

【 授权许可】

   
2014 Ellisdon et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705042906304.pdf 2810KB PDF download
Figure 5. 54KB Image download
Figure 4. 73KB Image download
Figure 3. 66KB Image download
Figure 2. 74KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC: An overview of the serpin superfamily. Genome Biol 2006, 7:216. BioMed Central Full Text
  • [2]Huntington JA: Serpin structure, function and dysfunction. J Thromb Haemost 2011, 9:26-34.
  • [3]Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart J-M, Huntington JA: Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem 2010, 285:24307-24312.
  • [4]Reichhart J-M, Gubb D, Leclerc V: The Drosophila Serpins. In Methods in Enzymology. Volume 499. Cambridge, MA, USA: Elsevier; 2011:205-225.
  • [5]Krüger O, Ladewig J, Köster K, Ragg H: Widespread occurrence of serpin genes with multiple reactive centre-containing exon cassettes in insects and nematodes. Gene 2002, 293:97-105.
  • [6]St Pierre SE, Ponting L, Stefancsik R, McQuilton P: FlyBase Consortium: FlyBase 102–advanced approaches to interrogating FlyBase. Nucleic Acids Res 2014, 42:D780-D788.
  • [7]Pak SC, Pak SC, Kumar V, Tsu C, Luke CJ, Askew YS, Askew DJ, Mills DR, Brömme D, Silverman GA: SRP-2 Is a Cross-class Inhibitor That Participates in Postembryonic Development of the Nematode Caenorhabditis elegans: INITIAL CHARACTERIZATION OF THE CLADE L SERPINS. J Biol Chem 2004, 279:15448-15459.
  • [8]Ragg H: The role of serpins in the surveillance of the secretory pathway. Cell Mol Life Sci 2007, 64:2763-2770.
  • [9]Börner S, Ragg H: Functional diversification of a protease inhibitor gene in the genus Drosophila and its molecular basis. Gene 2008, 415:23-31.
  • [10]Oley M, Letzel MC, Ragg H: Inhibition of furin by serpin Spn4A from Drosophila melanogaster. FEBS Lett 2004, 577:165-169.
  • [11]Osterwalder T, Kuhnen A, Leiserson WM, Kim Y-S, Keshishian H: Drosophila serpin 4 functions as a neuroserpin-like inhibitor of subtilisin-like proprotein convertases. J Neurosci 2004, 24:5482-5491.
  • [12]Richer MJ, Keays CA, Waterhouse J, Minhas J, Hashimoto C, Jean F: The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin. Proc Natl Acad Sci U S A 2004, 101:10560-10565.
  • [13]Brüning M, Lummer M, Bentele C, Smolenaars MMW, Rodenburg KW, Ragg H: The Spn4 gene from Drosophila melanogaster is a multipurpose defence tool directed against proteases from three different peptidase families. Biochem J 2007, 401:325-331.
  • [14]Ricagno S, Caccia S, Sorrentino G, Antonini G, Bolognesi M: Human neuroserpin: structure and time-dependent inhibition. J Mol Biol 2009, 388:109-121.
  • [15]Chen VB, Arendall WB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC: MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2009, 66:12-21.
  • [16]Li J, Wang Z, Canagarajah B, Jiang H, Kanost M, Goldsmith EJ: The structure of active serpin 1K from Manduca sexta. Structure 1999, 7:103-109.
  • [17]Park SH, Jiang R, Piao S, Zhang B, Kim E-H, Kwon H-M, Jin XL, Lee BL, Ha N-C: Structural and functional characterization of a highly specific serpin in the insect innate immunity. J Biol Chem 2011, 286:1567-1575.
  • [18]Takehara S, Onda M, Zhang J, Nishiyama M, Yang X, Mikami B, Lomas DA: The 2.1-A crystal structure of native neuroserpin reveals unique structural elements that contribute to conformational instability. J Mol Biol 2009, 388:11-20.
  • [19]Whisstock JC, Bottomley SP: Molecular gymnastics: serpin structure, folding and misfolding. Curr Opin Struct Biol 2006, 16:761-768.
  • [20]Carrell RW, Stein PE, Fermi G, Wardell MR: Biological implications of a 3 A structure of dimeric antithrombin. Structure 1994, 2:257-270.
  • [21]Irving JA, Pike RN, Lesk AM, Whisstock JC: Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 2000, 10:1845-1864.
  • [22]McPhillips TM, McPhillips SE, Chiu H-J, Cohen AE, Deacon AM, Ellis PJ, Garman E, Gonzalez A, Sauter NK, Phizackerley RP, Soltis SM, Kuhn P: Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 2002, 9:401-406.
  • [23]Collaborative Computational Project, Number 4: The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 1994, 50:760-763.
  • [24]Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010, 66:213-221.
  • [25]Langer G, Cohen SX, Lamzin VS, Perrakis A: Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 2008, 3:1171-1179.
  • [26]Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA: REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011, 67:355-367.
  • [27]Emsley P, Cowtan K: Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004, 60:2126-2132.
  文献评价指标  
  下载次数:70次 浏览次数:23次