BMC Cell Biology | |
The clustered protocadherin endolysosomal trafficking motif mediates cytoplasmic association | |
Greg R. Phillips2 Chantelle Roman1 Adam Shonubi1 | |
[1] Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island 10314, NY, USA;CUNY Graduate Center, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island 10314, NY, USA | |
关键词: Electron microscopy; Trafficking; Endosome; Cadherin; Adhesion; Protocadherins; | |
Others : 1234451 DOI : 10.1186/s12860-015-0074-4 |
|
received in 2015-06-06, accepted in 2015-11-12, 发布年份 2015 | |
![]() |
【 摘 要 】
Background
Clustered protocadherins (Pcdhs) are a large family of neural cadherin-like proteins encoded by individual exons located within three gene clusters. Each exon codes an extracellular, transmembrane, and proximal cytoplasmic domain. These “variable” regions may be spliced to a constant cytoplasmic moiety encoded at the end of a cluster. Pcdh extracellular domains mediate homophilic cell-cell binding but their cytoplasmic domains cause intracellular retention and may negatively regulate Pcdh cell-cell binding. Pcdhs can be found at the cell surface in neurons and other cells but are also, unlike classical cadherins, prominently trafficked to the endolysosome system. It was previously found that a segment within the variable portion of the Pcdh-γA3 cytoplasmic domain (VCD) was shown to be necessary for endolysosomal trafficking.
Results
Here it is shown that this same VCD segment can mediate cytoplasmic association among Pcdhs from the different clusters. Internal deletions within this VCD region (termed here the VCD motif) that disrupt the association altered trafficking of Pcdh-γA3 in the endolysosomal system while deletions outside VCD motif did not affect trafficking.
Conclusions
The results show that Pcdhs associate cytoplasmically via a motif within the VCD and that this is critical for Pcdh trafficking. Given that truncation at the VCD motif alters endolysosomal trafficking of Pcdhs, the VCD interaction described here may provide new insights into the dynamic nature of Pcdh mediated cell-cell interactions.
【 授权许可】
2015 Shonubi et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151130010229431.pdf | 2547KB | ![]() |
|
Fig. 6. | 121KB | Image | ![]() |
Fig. 5. | 84KB | Image | ![]() |
Fig. 4. | 141KB | Image | ![]() |
Fig. 3. | 64KB | Image | ![]() |
Fig. 2. | 130KB | Image | ![]() |
Fig. 1. | 77KB | Image | ![]() |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R, Watanabe M, Ishii H, Yasuda M, Mishina M, Yagi T. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron. 1998; 20(6):1137-1151.
- [2]Wu Q, Maniatis T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell. 1999; 97(6):779-790.
- [3]Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T. Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res. 2001; 11(3):389-404.
- [4]Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T. Promoter Choice Determines Splice Site Selection in Protocadherin alpha and gamma Pre-mRNA Splicing. Mol Cell. 2002; 10(1):21-33.
- [5]Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T. Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons. Nat Genet. 2005; 37(2):171-176.
- [6]Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T. Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells. J Biol Chem. 2006; 281(41):30551-30560.
- [7]Hirano K, Kaneko R, Izawa T, Kawaguchi M, Kitsukawa T, Yagi T. Single-neuron diversity generated by Protocadherin-beta cluster in mouse central and peripheral nervous systems. Front Mol Neurosci. 2012; 5:90.
- [8]Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T, Okano M, Oda M, Nakauchi H, Yoshimura Y, Sanbo M, Hirabayashi M, Hirayama T, Hirabayashi T, Yagi T. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron. 2014; 82(1):94-108.
- [9]Schreiner D, Weiner JA. Combinatorial homophilic interaction between {gamma}-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A. 2010; 107(33):14893-14898.
- [10]Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T. Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell. 2014; 158(5):59.
- [11]Garrett AM, Weiner JA. Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact. J Neurosci. 2009; 29(38):11723-11731.
- [12]Katori S, Hamada S, Noguchi Y, Fukuda E, Yamamoto T, Yamamoto H, Hasegawa S, Yagi T. Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J Neurosci. 2009; 29(29):9137-9147.
- [13]Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature. 2012; 488(7412):517-521.
- [14]Kostadinov D, Sanes JR. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. Elife. 2015;4:e08964 . PMCID: PMC4548410.
- [15]Garrett AM, Schreiner D, Lobas MA, Weiner JA. gamma-Protocadherins Control Cortical Dendrite Arborization by Regulating the Activity of a FAK/PKC/MARCKS Signaling Pathway. Neuron. 2012; 74(2):269-276.
- [16]Keeler AB, Schreiner D, Weiner JA. Protein Kinase C Phosphorylation of a gamma-Protocadherin C-terminal Lipid Binding Domain Regulates Focal Adhesion Kinase Inhibition and Dendrite Arborization. J Biol Chem. 2015; 290(34):20674-20686.
- [17]Wang X, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR. Gamma protocadherins are required for survival of spinal interneurons. Neuron. 2002; 36(5):843-854.
- [18]Phillips GR, Tanaka H, Frank M, Elste A, Fidler L, Benson DL, Colman DR. Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J Neurosci. 2003; 23(12):5096-5104.
- [19]Fernandez-Monreal M, Oung T, Hanson HH, O’Leary R, Janssen WG, Dolios G, Wang R, Phillips GR. Gamma-protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons. Eur J Neurosci. 2010; 32(6):921-931.
- [20]Fernandez-Monreal M, Kang S, Phillips GR. Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons. Mol Cell Neurosci. 2009; 40(3):344-353.
- [21]Hanson HH, Kang S, Fernandez-Monreal M, Oung T, Yildirim M, Lee R, Suyama K, Hazan RB, Phillips GR. LC3-dependent intracellular membrane tubules induced by gamma-protocadherins A3 and B2: A role for intraluminal interactions. J Biol Chem. 2010; 285:20982-20992.
- [22]O’Leary R, Reilly J, Hanson HH, Kang S, Lou N, Phillips GR. A variable cytoplasmic domain segment is necessary for gamma-protocadherin trafficking and tubulation in the endosome/lysosome pathway. Mol Biol Cell. 2011;22(22):4362-72. PMCID: PMC3216661.
- [23]Buchanan SM, Schalm SS, Maniatis T. Proteolytic processing of protocadherin proteins requires endocytosis. Proc Natl Acad Sci U S A. 2010; 107(41):17774-17779.
- [24]Schalm SS, Ballif BA, Buchanan SM, Phillips GR, Maniatis T. Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proc Natl Acad Sci U S A. 2010; 107(31):13894-13899.
- [25]Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T. Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. J Biol Chem. 2004; 279(47):49508-49516.
- [26]Rubinstein R, Thu CA, Goodman KM, Wolcott HN, Bahna F, Mannepalli S, Ahlsen G, Chevee M, Halim A, Clausen H, Maniatis T, Shapiro L, Honig B. Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell. 2015; 163(3):629-642.
- [27]Obata S, Sago H, Mori N, Rochelle JM, Seldin MF, Davidson M, St John T, Taketani S, Suzuki ST. Protocadherin Pcdh2 shows properties similar to, but distinct from, those of classical cadherins. J Cell Sci. 1995; 108(Pt 12):3765-3773.
- [28]Lin C, Meng S, Zhu T, Wang X. PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival. J Biol Chem. 2010; 285(53):41675-41685.
- [29]Haas IG, Frank M, Veron N, Kemler R. Presenilin-dependent processing and nuclear function of gamma-protocadherins. J Biol Chem. 2005; 280(10):9313-9319.
- [30]Hanson HH, Reilly JE, Lee R, Janssen WG, Phillips GR. Streamlined embedding of cell monolayers on gridded live imaging dishes for correlative light and electron microscopy. Microsc Microanal. 2010; 20:1-8.