期刊论文详细信息
BMC Genomics
Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping
Zhongxu Lin1  David D Fang2  Xianlong Zhang1  Huanle Guo1  Wenhui Gao1  Ximei Li3 
[1] National Key Laboratory of Crop Genetic Improvement & National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, Hubei, China;Cotton Fiber Bioscience Research Unit, USDA–ARS, Southern Regional Research Center, New Orleans, LA 70124, USA;College of Agronomy and Plant Protection, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology, Qingdao 266109, Shandong, China
关键词: Genetic mapping;    InDel;    SNP;    Molecular markers;    Cotton;   
Others  :  1090164
DOI  :  10.1186/1471-2164-15-1046
 received in 2014-06-01, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop more molecular markers in cotton.

Results

A total of 1,349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, mining G. hirsutum unigenes, and analyzing 3′ untranslated region (3′UTR) sequences. The marker polymorphisms were investigated using the two parents of the mapping population based on the single-strand conformation polymorphism (SSCP) analysis. Of all the markers, 137 (10.16%) were polymorphic, and revealed 142 loci. Linkage analysis using a BC1 population mapped 133 loci on the 26 chromosomes. Statistical analysis of base variations in SNPs showed that base transitions accounted for 55.78% of the total base variations and gene ontology indicated that cotton genes varied greatly in harboring SNPs ranging from 1.00 to 24.00 SNPs per gene. Sanger sequencing of three randomly selected SNP markers revealed discrepancy between the in silico predicted sequences and the actual sequencing results.

Conclusions

In silico analysis is a double-edged blade to develop EST-SNP/InDel markers. On the one hand, the designed markers can be well used in tetraploid cotton genetic mapping. And it plays a certain role in revealing transition preference and SNP frequency of cotton genes. On the other hand, the developmental efficiency of markers and polymorphism of designed primers are comparatively low.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128154601167.pdf 1721KB PDF download
Figure 3. 75KB Image download
Figure 2. 126KB Image download
Figure 1. 166KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]An C, Saha S, Jenkins JN, Ma DP, Scheffler BE, Kohel RJ, Yu JZ, Stelly DM: Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet 2008, 116(7):1015-1026.
  • [2]Van Deynze A, Stoffel K, Lee M, Wilkins TA, Kozik A, Cantrell RG, Yu JZ, Kohel RJ, Stelly DM: Sampling nucleotide diversity in cotton. BMC Plant Biol 2009, 9:125. BioMed Central Full Text
  • [3]Fang DD, Yu JZ: Addition of 455 microsatellite marker loci to the high-density Gossypium hirsutum TM-1 x G. barbadense 3–79 genetic map. J Cotton Sci 2012, 16:229-248.
  • [4]Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M, Hoffman SM, Pepper AE, Stelly DM, Jenkins JN, Saha S, Kumpatla SP, Shah MR, Hugie WV, Percy RG: A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. Gene Genome Genet 2012, 2(1):43-58.
  • [5]Byers RL, Harker DB, Yourstone SM, Maughan PJ, Udall JA: Development and mapping of SNP assays in allotetraploid cotton. Theor Appl Genet 2012, 124(7):1201-1214.
  • [6]Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimaraes Pereira GA, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C: Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 2012, 7(11):e48855.
  • [7]Trick M, Long Y, Meng J, Bancroft I: Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 2009, 7(4):334-346.
  • [8]Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB: Single-nucleotide polymorphisms in soybean. Genetics 2003, 163:1123-1134.
  • [9]Cai CM, Van K, Kim MY, Jun TH, Shin JH, Cho SY, Lee YS, Lee SH: SNP discovery, linkage analysis and microsynteny in tentative consensus sequences derived from roots cDNA in a supernodulating soybean mutant. Euphytica 2008, 164(1):189-197.
  • [10]Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J: Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 2009, 23:23-33.
  • [11]Schmid KJ, Sörensen TR, Stracke R, Torjek O, Altmann T, Mitchell-Olds T, Weisshaar B: Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 2003, 13(6A):1250-1257.
  • [12]Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A: Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 2003, 270(1):24-33.
  • [13]Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D: Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 2003, 132(1):84-91.
  • [14]Grivet L, Glaszmann JC, Vincentz M, da Silva F, Arruda P: ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 2003, 106(2):190-197.
  • [15]Labate JA, Baldo AM: Tomato SNP discovery by EST mining and resequencing. Mol Breed 2005, 16(4):343-349.
  • [16]Ferguson ME, Hearne SJ, Close TJ, Wanamaker S, Moskal WA, Town CD, de Young J, Marri PR, Rabbi IY, de Villiers EP: Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theor Appl Genet 2012, 124(4):685-695.
  • [17]Chaisan T, Van K, Kim MY, Kim KD, Choi BS, Lee SH: In silico single nucleotide polymorphism discovery and application to marker-assisted selection in soybean. Mol Breed 2012, 29(1):221-233.
  • [18]Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, Donaldson MA, Nickerson DA, Boyce-Jacino M: Mining SNPs from EST databases. Genome Res 1999, 9(2):167-174.
  • [19]Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X: Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between gossypium hirsutum and G. barbadense. BMC Genomics 2011, 12:15. BioMed Central Full Text
  • [20]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Mouse Genome Sequencing Consortium, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420(6915):520-562.
  • [21]Andreassen R, Lunner S, Høyheim B: Targeted SNP discovery in Atlantic salmon (Salmo salar) genes using a 3′UTR-primed SNP detection approach. BMC Genomics 2010, 11:706. BioMed Central Full Text
  • [22]Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A: Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3′UTR sequencing. BMC Genomics 2012, 13:18. BioMed Central Full Text
  • [23]Guo W, Wang W, Zhou B, Zhang T: Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 2006, 112(8):1573-1581.
  • [24]Cao ZF, Ma CX, Wang L, Cai B: Analysis of population stratification using random SNPs in genome-wide association studies. Hereditas 2010, 32(9):921-928.
  • [25]Gupta P, Idris A, Mantri S, Asif MH, Yadav HK, Roy JK, Tuli R, Mohanty CS, Sawant SV: Discovery and use of single nucleotide polymorphic (SNP) markers in Jatropha curcas L. Mol Breed 2012, 30(3):1325-1335.
  • [26]Geng R, Chang H, Li Y, Ji D, Chang C, Wang L, Chang G: Variation of complete coding sequence of GH gene in Chinese Bovinae species. Acta Vet Zootech Sin 2008, 39(12):1779-1784.
  • [27]Tsaftaris AS, Polidoros AN: DNA methylation and plant breeding. Plant Breed Rev 1999, 18:87-176.
  • [28]Hazelhurst S, Hide W, Lipták Z, Nogueira R, Starfield R: An overview of the wcd EST clustering tool. Bioinformatics 2008, 24(13):1542-1546.
  • [29]Wang X, Ren G, Li X, Tu J, Lin Z, Zhang X: Development and evaluation of intron and insertion-deletion markers for Gossypium barbadense. Plant Mol Biol Rep 2011, 30(3):605-613.
  • [30]Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM: Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 2005, 124:180-187.
  • [31]Li X, Yuan D, Wang H, Chen X, Wang B, Lin Z, Zhang X: Increasing cotton genome coverage with polymorphic SSRs as revealed by SSCP. Genome 2012, 55(6):459-470.
  • [32]Liu C, Lin Z, Zhang X: Unbiased genomic distribution of genes related to cell morphogenesis in cotton by chromosome mapping. Plant Cell Tiss Org 2012, 108(3):529-534.
  • [33]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-3676.
  • [34]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [35]Li X, Yuan D, Zhang J, Lin Z, Zhang X: Genetic mapping and characteristics of genes specifically or preferentially expressed during fiber development in cotton. PLoS One 2013, 8(1):e54444.
  • [36]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
  文献评价指标  
  下载次数:4次 浏览次数:13次