期刊论文详细信息
BMC Genetics
Detecting negative selection on recurrent mutations using gene genealogy
Dan Graur1  Giddy Landan2  Kiyoshi Ezawa3 
[1] Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA;Present address: Institute of Genomic Microbiology, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany;Present address: Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
关键词: Neutrality test;    Deleterious mutation;    Negative selection;    Recurrent mutation;    Population genetics;   
Others  :  1087122
DOI  :  10.1186/1471-2156-14-37
 received in 2012-09-20, accepted in 2013-04-13,  发布年份 2013
PDF
【 摘 要 】

Background

Whether or not a mutant allele in a population is under selection is an important issue in population genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative selection in the gene genealogy enhanced by their recurrence.

Results

Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses demonstrated high powers of our new tests under constant population size, as well as their moderate power to detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy, enumerates mutation histories with a minimum number of mutations while partially resolving genealogical relationships when necessary.

Conclusions

With their considerably high powers to detect negative selection, our new neutrality tests may open new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types of genetic disorders that may have escaped identification by currently existing methods.

【 授权许可】

   
2013 Ezawa et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023111859.pdf 2672KB PDF download
Figure 6. 89KB Image download
Figure 5. 55KB Image download
Figure 4. 71KB Image download
Figure 3. 68KB Image download
Figure 2. 29KB Image download
Figure 1. 97KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Crow JF, Kimura M: An Introduction to Population Genetics Theory. Caldwell, NJ, USA: Blackburn Press; 1970.
  • [2]Gillespie JH: Population Genetics: A Concise Guide. 2nd edition. Baltimore, Maryland, USA: Johns Hopkins Univ. Press; 2004.
  • [3]Hartl DL, Clak AG: Principles of Population Genetics. 4th edition. Sunderland, Massachusetts, USA: Sinauer Associates, Inc.; 2007.
  • [4]Hedrick PW: Genetics of Populations. 4th edition. Sudbury, Massachusetts, USA: Jones and Bartlett Publishers; 2011.
  • [5]Ewens WJ: Testing for increased mutation rate for neutral alleles. Theor Popul Biol 1973, 4:251-258.
  • [6]Watterson GA: The homozygosity test of neutrality. Genetics 1978, 88:405-417.
  • [7]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [8]Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics 1993, 133:693-709.
  • [9]Slatkin M: An exact test for neutrality based on the Ewens sampling distribution. Genet Res 1994, 64:71-74.
  • [10]Slatkin M: A correction to the exact test based on the Ewens sampling distribution. Genet Res 1996, 68:259-260.
  • [11]Fay JC, Wu CI: Hitchhiking under positive Darwinian selection. Genetics 2000, 155:1405-1413.
  • [12]Zeng K, Fu YX, Shi S, Wu CI: Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 2006, 174:1431-1439.
  • [13]Kimura M: Evolutionary rate at the molecular level. Nature 1968, 217:624-626.
  • [14]Kimura M: Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res 1968, 11:247-270.
  • [15]Kimura M: The Neutral Theory of Molecular Evolution. Cambridge, UK: Cambridge University Press; 1983.
  • [16]Ewens WJ: The sampling theory of selectively neutral alleles. Theor Popul Biol 1972, 4:251-258.
  • [17]Karlin S, McGregor J: Addendum to a paper of W. Ewens. Theor Popul Biol 1972, 3:113-116.
  • [18]Hudson RR, Kaplan NL: The coalescent process in models with selection and recombination. Genetics 1988, 120:831-840.
  • [19]Kaplan NL, Darden T, Hudson RR: The coalescent process in models with selection. Genetics 1988, 120:819-829.
  • [20]Kelly JK: A test of neutrality based on interlocus associations. Genetics 1997, 146:1197-1206.
  • [21]Kelly JK, Wade MJ: Molecular evolution near a two-locus balanced polymorphism. J Theor Biol 2000, 204:83-101.
  • [22]Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, The International HapMap Consortium: Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449:913-918.
  • [23]Thornton KR, Jensen JD, Becquet C, Andolfatto P: Progress and prospects for mapping resent selection in the genome. Heredity 2007, 98:340-348.
  • [24]Pavlidis P, Hutter S, Stephan W: A population genomic approach to map recent positive selection in model species. Mol Ecol 2008, 17:3585-3598.
  • [25]Zhai W, Nielsen R, Slatkin M: An investigation of the statistical power of neutrality tests based on comparative and population genetics data. Mol Biol Evol 2009, 26:273-283.
  • [26]Kimura M: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 1969, 61:893-903.
  • [27]The International HapMap Consortium: A haplotype map of the human genome. Nature 2005, 437:1299-1320.
  • [28]The International HapMap Consortium: A second generation human haplotype map of over 3.1 million SNPs. Nature 2007, 449:851-861.
  • [29]Day INM: dbSNP in the detail and copy number complexities. Hum Mutat 2010, 31:2-4.
  • [30]The International HapMap 3 Consortium: Integrating common and rare genetic variation in diverse human populations. Nature 2010, 467:52-58.
  • [31]Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Mavin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M: Large-scale copy number polymorphism in the human genome. Science 2004, 305:525-528.
  • [32]Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE: Fine-scale structural variation of the human genome. Nat Genet 2005, 37:727-732.
  • [33]Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, Clark R, Dovey O, Ellis P, Feuk L, French L, Hunt P, Kalaitzopoulos D, Larkin J, Montgomery L, Perry GH, Plumb BW, Porter K, Rigby RE, Rigler D, Valsesia A, Langford C, Humphray SJ, Scherer SW, Lee C, Hurles ME, Carter NP: Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 2006, 16:1566-1574.
  • [34]Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders ACE, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M: Paired-end mapping reveals extensive structural variation in the human genome. Science 2007, 318:420-426.
  • [35]Medvedev P, Stanciu M, Brudno M: Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 2009, 6:s13-s20.
  • [36]Maydan J, Lorch A, Edgley ML, Flibotte S, Moerman DG: Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans. BMC Genomics 2010, 11:62. BioMed Central Full Text
  • [37]Emerson JJ, Cardoso-Moreira M, Borevitz JO, Long M: Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 2008, 320:1629-1631.
  • [38]Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D: Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 2008, 18:2024-2033.
  • [39]Perry G, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Vilanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC: Copy number variation and evolution in humans and chimpanzees. Genome Res 2008, 18:1698-1710.
  • [40]She X, Cheng Z, Zöllner S, Church DM, Eichler EE: Mouse segmental duplication and copy number variation. Nat Genet 2008, 40:909-914.
  • [41]Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzaléz JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodward C, Yang F: Global variation in copy number in the human genome. Nature 2006, 444:444-454.
  • [42]Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, MacArthur DG, MacDonald JR, Onyiah I, Pang AWC, Robson S, Stirrups K, Valsesia A, Walter KWJ, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME, Wellcome Trust Case Control Consortium: Origins and functional impact of copy number variation in the human genome. Nature 2010, 464:704-712.
  • [43]Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Yoon SC, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Rausch T, Scally A, Lin CY, Luo R: Mapping copy number variation by population-scale genome sequencing. Nature 2011, 470:59-65.
  • [44]Lupski JR: Genomic rearrangements and sporadic disease. Nat Genet 2007, 39:s43-s47.
  • [45]Fu W, Zhang F, Wang Y, Gu X, Jin L: Identification of copy number variation hotspots in human populations. Am J Hum Genet 2010, 87:494-504.
  • [46]Antonacci F, Kidd JM, Marques-Bonet T, Ventura M, Siswara P, Jiang Z, Eichler EE: Characterization of six human disease-associated inversion polymorphisms. Hum Mol Genet 2009, 28:2555-2566.
  • [47]Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC: Diet and the evolution of human amylase gene copy number variation. Nat Genet 2007, 39:1256-1260.
  • [48]Nozawa M, Kawahara Y, Nei M: Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci USA 2007, 104:20421-20426.
  • [49]Ewing G, Hermisson J: MSMS: a coalescent simulation program including recombination, demographic structure, and selection at a single locus. Bioinformatics 2010, 26:2064-2065.
  • [50]Ellegren H: Microsatellites: simple sequences with complex evolution. Nat Rev Genet 2004, 5:435-445.
  • [51]Golding GB: The effect of purifying selection on genealogies. In Progress in population genetics and human evolution. Edited by Donnelly P, Tavaré S. New York: Splinger-Verlag; 1997:271-285.
  • [52]Krone SM, Neuhauser C: Ancestral process with selection. Theor Popul Biol 1997, 51:210-237.
  • [53]Neuhauser C, Krone SM: The genealogy of samples in models with selection. Genetics 1997, 145:519-534.
  • [54]Przeworski M, Charlesworth B, Wall JD: Genealogies and weak purifying selection. Mol Biol Evol 1999, 16:246-252.
  • [55]Slade PF: Simulation of selected genealogies. Theor Popul Biol 2000, 57:35-49.
  • [56]Williamson S, Orive ME: The genealogy of a sequence subject to purifying selection at multiple sites. Mol Biol Evol 2002, 19:1376-1384.
  • [57]Watterson GA: The sampling theory of selectively neutral alleles. Adv Appl Prob 1974, 6:463-488.
  • [58]Wright S: Evolution in Mendelian populations. Genetics 1931, 16:97-159.
  • [59]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
  • [60]Fitch WM: Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 1971, 20:406-416.
  • [61]Sankoff D: Minimal mutation trees of sequences. SIAM J Appl Math 1975, 28:35-42.
  • [62]Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 2009, 5:e1000695.
  • [63]Gu W, Zhang F, Lupski JR: Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1:4. BioMed Central Full Text
  • [64]Milá B, Girman DJ, Kimura M, Smith TB: Genetic evidence for the effect of a postglacial population expansion on the phylogeography of North American songbird. Proc Biol Sci 2000, 267:1033-1040.
  • [65]Xue Y, Zerjal T, Bao W, Zhu S, Shu Q, Xu J, Du R, Fu S, Li P, Hurles ME, Yang H, Tyler-Smith C: Male demography in East Asia: a north–south contrast in human population expansion times. Genetics 2006, 172:2431-2439.
  • [66]Kawamoto Y, Shotake T, Nozawa K, Kawamoto S, Tomari K, Kawai S, Shirai K, Morimitsu Y, Takagi N, Akaza H, Fujii H, Hagihara K, Aizawa K, Skachi S, Oi T, Hayaishi S: Postglacial population expansion of Japanese macaques (Macaca fuscata) inferred from mitochondrial DNA phylogeny. Primates 2007, 48:27-40.
  • [67]Mirol PM, Routtu J, Hoikkala A, Butlin RK: Signals of demographic expansion in Drosophila virilis. BMC Evol Biol 2008, 8:59. BioMed Central Full Text
  • [68]Slatkin M, Hudson RR: Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 1991, 129:555-562.
  • [69]Griffiths RC, Tavaré S: Sampling theory for neutral alleles in a varying environment. Philos Trans R Soc Lon B Biol Sci 1994, 344:403-410.
  • [70]Slatkin M: Linkage disequilibrium in growing and stable populations. Genetics 1994, 137:331-336.
  • [71]Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R, Bustamante CD: Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proc Natl Acad Sci USA 2005, 102:7882-7887.
  • [72]Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, White TJ, Nielsen R, Clark AG, Bustamante CD: Assessing the evolutionary impact of amino acid mutations in the human genome. PLoS Genet 2008, 4:e1000083.
  • [73]Charlesworth D, Charlesworth B, Morgan MT: The pattern of neutral molecular variation under the background selection model. Genetics 1995, 141:1619-1632.
  • [74]Zeng K, Mano S, Shi S, Wu CI: Comparisons of site- and haplotype-frequency methods for detecting positive selection. Mol Biol Evol 2007, 24:1562-1574.
  • [75]Wright S: The genetical structure of populations. Ann Eugen 1951, 15:323-354.
  • [76]Slatkin M, Barton NH: A comparison of three indirect methods for estimating average levels of gene flow. Evolution 1989, 43:1349-1368.
  • [77]Ohta T, Kimura M: A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 1973, 22:201-204.
  • [78]Estoup A, Jarne P, Cornuet JM: Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 2002, 11:1591-1604.
  • [79]Sainudiin R, Durrett RT, Aquadro CF, Nielsen R: Microsatellite mutation models: Insights from a comparison of humans and chimpanzees. Genetics 2004, 168:383-395.
  • [80]Charlesworth B, Morgan MT, Charlesworth D: The effect of deleterious mutations on neutral molecular variation. Genetics 1993, 134:1289-1303.
  • [81]Hudson RR: How can the low levels of DNA sequence variation in regions of the Drosophila genome with low recombination rates explained? Proc. Natl. Acad. Sci USA 1994, 91:6815-6818.
  • [82]Hudson RR, Kaplan NL: Coalescent process and background selection. Phil. Transac. Biol. Sci. 1995, 349:19-23.
  • [83]Nordborg M, Charlesworth B, Charlesworth D: The effect of recombination on background selection. Genet Res 1996, 67:159-174.
  • [84]Kaiser VB, Charlesworth B: The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet 2009, 25:9-12.
  • [85]Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I: Genetic recombination and molecular evolution. Cold Spring Harb Symp Quant Biol 2009, 74:177-186.
  • [86]Hill WG, Robertson A: The effect of linkage on limits to artificial selection. Genet Res 1966, 8:269-294.
  • [87]Arguello JR, Zhang Y, Kado T, Fan C, Zhao R, Innan H, Wang W, Long M: Recombination yet inefficient selection along the Drosophila melanogaster subgroup’s fourth chromosome. Mol Biol Evol 2010, 27:848-861.
  • [88]Campos JL, Charlesworth B, Haddrill PR: Molecular evolution in nonrecombining regions of the Drosoplhila melanogaster genome. Genome Biol Evol 2012, 4:278-288.
  • [89]McGaugh SE, Hell CSS, Manzano-Winkler B, Loewe L, Goldstein S, Himmel TL, Noor MAF: Recombination modulates how selection affects linked sites in Drosophila. PLoS Biol 2012, 10:e1001422.
  • [90]Slatkin M, Rannala B: The sampling distribution of disease-associated alleles. Genetics 1997, 147:1855-1861.
  • [91]Hartl DL, Campbell RB: Allele multiplicity in simple Mendelian disorders. Am J Hum Genet 1982, 34:866-873.
  • [92]Sawyer S: A stability property of the Ewens sampling formula. J Appl Prob 1983, 20:449-459.
  • [93]Scriver CR: The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 2007, 28:831-845.
  • [94]Blau N, van Spronsen FJ, Levy HL: Phenylketonuria. Lancet 2010, 376:1417-1427.
  • [95]Ezawa K: DENSERM: DEtecting Negative SElection on Recurrent Mutations. [http://www.bioinformatics.org/ftp/pub/DENSERM/ webcite]
  文献评价指标  
  下载次数:30次 浏览次数:4次