期刊论文详细信息
BMC Microbiology
Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis
Prasit Palittapongarnpim2  Therdsak Prammananan2  Pijug Summpunn4  Kamolchanok Rukseree1  Saradee Warit2  Olabisi Oluwabukola Coker3 
[1] Current Address: Mahidol University, Amnatcharoen Campus, Muang, Amnatcharoen 37000, Thailand;National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, PathumThani 12120, Thailand;Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand;Current Address: School of Agricultural Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand
关键词: Mycobacterium tuberculosis;    Phosphoglycerate mutase;    Histidine phosphatase superfamily;    Hypothetical protein;    Acid phosphatase;    Rv0489;    Rv2135c;   
Others  :  1142406
DOI  :  10.1186/1471-2180-13-292
 received in 2013-07-05, accepted in 2013-12-07,  发布年份 2013
PDF
【 摘 要 】

Background

Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is ‘RHA’ unlike ‘RHG’ found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal.

Results

Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution.

Conclusion

Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic annotation systems towards a better understanding of this important group of enzymes.

【 授权许可】

   
2013 Coker et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328051005375.pdf 2354KB PDF download
Figure 5. 38KB Image download
Figure 4. 40KB Image download
Figure 3. 60KB Image download
Figure 2. 73KB Image download
Figure 1. 287KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Santos LG, Pires GN, Azeredo Bittencourt LR, Tufik S, Andersen ML: Chronobiology: relevance for tuberculosis. Tuberculosis (Edinb) 2012, 92(4):293-300.
  • [2]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-544.
  • [3]Watkins HA, Baker EN: Structural and functional analysis of Rv3214 from Mycobacterium tuberculosis, a protein with conflicting functional annotations, leads to its characterization as a phosphatase. Journal of bacteriology 2006, 188(10):3589-3599.
  • [4]Hills T, Srivastava A, Ayi K, Wernimont AK, Kain K, Waters AP, Hui R, Pizarro JC: Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol 2011, 179(2):69-79.
  • [5]Richardson EJ, Watson M: The automatic annotation of bacterial genomes. Briefings in bioinformatics 2013, 14(1):1-12.
  • [6]Gilks WR, Audit B, de Angelis D, Tsoka S, Ouzounis CA: Percolation of annotation errors through hierarchically structured protein sequence databases. Mathematical biosciences 2005, 193(2):223-234.
  • [7]Poptsova MS, Gogarten JP: Using comparative genome analysis to identify problems in annotated microbial genomes. Microbiology 2010, 156(Pt 7):1909-1917.
  • [8]Friedberg I: Automated protein function prediction–the genomic challenge. Briefings in bioinformatics 2006, 7(3):225-242.
  • [9]Rigden DJ: The histidine phosphatase superfamily: Structure and function. Biochem J 2008, 409(2):333-348.
  • [10]Pilkis SJ, Lively MO, El-Maghrabi MR: Active site sequence of hepatic fructose-2,6-bisphosphatase. Homology in primary structure with phosphoglycerate mutase. The Journal of biological chemistry 1987, 262(26):12672-12675.
  • [11]Fothergill LA, Harkins RN: The amino acid sequence of yeast phosphoglycerate mutase. Proc R Soc Lond B Biol Sci 1982, 215(1198):19-44.
  • [12]Fothergill-Gilmore LA, Watson HC: The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol 1989, 62:227-313.
  • [13]Fleisig H, El-Din El-Husseini A, Vincent SR: Regulation of ErbB4 phosphorylation and cleavage by a novel histidine acid phosphatase. Neuroscience 2004, 127(1):91-100.
  • [14]Suter A, Everts V, Boyde A, Jones SJ, Lullmann-Rauch R, Hartmann D, Hayman AR, Cox TM, Evans MJ, Meister T, et al.: Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice. Development 2001, 128(23):4899-4910.
  • [15]Bazan JF, Fletterick RJ, Pilkis SJ: Evolution of a bifunctional enzyme: 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Proc Natl Acad Sci U S A 1989, 86(24):9642-9646.
  • [16]Muller P, Sawaya MR, Pashkov I, Chan S, Nguyen C, Wu Y, Perry LJ, Eisenberg D: The 1.70 angstroms X-ray crystal structure of Mycobacterium tuberculosis phosphoglycerate mutase. Acta Crystallogr D Biol Crystallogr 2005, 61(Pt 3):309-315.
  • [17]Mendes V, Maranha A, Alarico S, da Costa MS, Empadinhas N: Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci Rep 2011, 1:177.
  • [18]Lew JM, Kapopoulou A, Jones LM, Cole ST: TubercuList–10 years after. Tuberculosis (Edinb) 2010, 91(1):1-7.
  • [19]Rigden DJ, Bagyan I, Lamani E, Setlow P, Jedrzejas MJ: A cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus is actually a broad specificity phosphatase. Protein Sci 2001, 10(9):1835-1846.
  • [20]Malen H, Pathak S, Softeland T, de Souza GA, Wiker HG: Definition of novel cell envelope associated proteins in Triton X-114 extracts of Mycobacterium tuberculosis H37Rv. BMC Microbiol 2010, 10:132. BioMed Central Full Text
  • [21]Jedrzejas MJ: Structure, function, and evolution of phosphoglycerate mutases: Comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. Prog Biophys Mol Biol 2000, 73(2–4):263-287.
  • [22]Fraser HI, Kvaratskhelia M, White MF: The two analogous phosphoglycerate mutases of Escherichia coli. FEBS Lett 1999, 455(3):344-348.
  • [23]Gautam N: Mutated forms of phosphoglycerate mutase in yeast affect reversal of metabolic flux. Effect of reversible and irreversible function of an enzyme on pathway reversal. The Journal of biological chemistry 1988, 263(30):15400-15406.
  • [24]Foster JM, Davis PJ, Raverdy S, Sibley MH, Raleigh EA, Kumar S, Carlow CK: Evolution of bacterial phosphoglycerate mutases: non-homologous isofunctional enzymes undergoing gene losses, gains and lateral transfers. PloS one 2010, 5(10):e13576.
  • [25]Vincent JB, Crowder MW, Averill BA: Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends Biochem Sci 1992, 17(3):105-110.
  • [26]Bodansky O: Acid phosphatase. Adv Clin Chem 1972, 15:43-147.
  • [27]Vinopal RT: Microbial metabolism: phosphate metabolism and cellular regulation in microorganisms. Science 1988, 239(4839):513-514.
  • [28]Coleman JE: Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 1992, 21:441-483.
  • [29]Lamarche MG, Wanner BL, Crepin S, Harel J: The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 2008, 32(3):461-473.
  • [30]Dubail I, Berche P, Charbit A: Listeriolysin O as a reporter to identify constitutive and in vivo-inducible promoters in the pathogen Listeria monocytogenes. Infect Immun 2000, 68(6):3242-3250.
  • [31]Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D: Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 1998, 66(12):5620-5629.
  • [32]Talaat AM, Lyons R, Howard ST, Johnston SA: The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A 2004, 101(13):4602-4607.
  • [33]Merrell DS, Hava DL, Camilli A: Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 2002, 43(6):1471-1491.
  • [34]Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HL: Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 2004, 72(5):2922-2938.
  • [35]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. Journal of molecular biology 1990, 215(3):403-410.
  • [36]Kuznetsova E, Xu L, Singer A, Brown G, Dong A, Flick R, Cui H, Cuff M, Joachimiak A, Savchenko A, et al.: Structure and activity of the metal-independent fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae. The Journal of biological chemistry 2010, 285(27):21049-21059.
  • [37]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [38]Gish W, States DJ: Identification of protein coding regions by database similarity search. Nature genetics 1993, 3(3):266-272.
  • [39]Reilly TJ, Felts RL, Henzl MT, Calcutt MJ, Tanner JJ: Characterization of recombinant Francisella tularensis acid phosphatase A. Protein expression and purification 2006, 45(1):132-141.
  • [40]Aguirre-Garcia MM, Cerbon J, Talamas-Rohana P: Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1:IMSS. Int J Parasitol 2000, 30(5):585-591.
  • [41]Grundner C, Ng HL, Alber T: Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure 2005, 13(11):1625-1634.
  • [42]Cowley SC, Babakaiff R, Av-Gay Y: Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res Microbiol 2002, 153(4):233-241.
  • [43]Boitel B, Ortiz-Lombardia M, Duran R, Pompeo F, Cole ST, Cervenansky C, Alzari PM: PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol 2003, 49(6):1493-1508.
  • [44]de Souza GA, Leversen NA, Malen H, Wiker HG: Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 2011, 75(2):502-510.
  • [45]Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, et al.: Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 2003, 198(5):693-704.
  • [46]Anderson RG, Hussey H, Baddiley J: The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 1972, 127(1):11-25.
  • [47]Swiezewska E, Danikiewicz W: Polyisoprenoids: structure, biosynthesis and function. Prog Lipid Res 2005, 44(4):235-258.
  • [48]Chalker AF, Ingraham KA, Lunsford RD, Bryant AP, Bryant J, Wallis NG, Broskey JP, Pearson SC, Holmes DJ: The bacA gene, which determines bacitracin susceptibility in Streptococcus pneumoniae and Staphylococcus aureus, is also required for virulence. Microbiology 2000, 146(Pt 7):1547-1553.
  • [49]El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D: Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. The Journal of biological chemistry 2005, 280(19):18689-18695.
  • [50]Darby CM, Venugopal A, Ehrt S, Nathan CF: Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice. Tuberculosis (Edinb) 2011, 91(5):343-347.
  • [51]Bernard R, El Ghachi M, Mengin-Lecreulx D, Chippaux M, Denizot F: BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. The Journal of biological chemistry 2005, 280(32):28852-28857.
  • [52]Tatar LD, Marolda CL, Polischuk AN, van Leeuwen D, Valvano MA: An Escherichia coli undecaprenyl-pyrophosphate phosphatase implicated in undecaprenyl phosphate recycling. Microbiology 2007, 153(Pt 8):2518-2529.
  • [53]Touze T, Blanot D, Mengin-Lecreulx D: Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. The Journal of biological chemistry 2008, 283(24):16573-16583.
  • [54]Kelley LA, Sternberg MJ: Protein structure prediction on the Web: a case study using the Phyre server. Nature protocols 2009, 4(3):363-371.
  • [55]Chiba Y, Horita S, Ohtsuka J, Arai H, Nagata K, Igarashi Y, Tanokura M, Ishii M: Structural units important for activity of a novel-type phosphoserine phosphatase from Hydrogenobacter thermophilus TK-6 revealed by crystal structure analysis. The Journal of biological chemistry 2013, 288(16):11448-11458.
  • [56]Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM: High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS pathogens 2011, 7(9):e1002251.
  • [57]Sheibley RH, Hass LF: Isolation and partial characterization of monophosphoglycerate mutase from human erythrocytes. The Journal of biological chemistry 1976, 251(21):6699-6704.
  • [58]Bond CS, White MF, Hunter WN: Mechanistic implications for Escherichia coli cofactor-dependent phosphoglycerate mutase based on the high-resolution crystal structure of a vanadate complex. Journal of molecular biology 2002, 316(5):1071-1081.
  • [59]Rigden DJ, Alexeev D, Phillips SE, Fothergill-Gilmore LA: The 2.3 A X-ray crystal structure of S. cerevisiae phosphoglycerate mutase. Journal of molecular biology 1998, 276((2):449-459.
  • [60]Solem C, Petranovic D, Koebmann B, Mijakovic I, Jensen PR: Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis. J Mol Microbiol Biotechnol 2010, 18(3):174-180.
  • [61]Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Methods in enzymology 1990, 185:60-89.
  • [62]van Soolingen D, de Haas PE, Hermans PW, van Embden JD: DNA fingerprinting of Mycobacterium tuberculosis. Methods in enzymology 1994, 235:196-205.
  • [63]Rigden DJ, Mello LV, Setlow P, Jedrzejas MJ: Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity. Journal of molecular biology 2002, 315(5):1129-1143.
  • [64]White MF, Fothergill-Gilmore LA: Development of a mutagenesis, expression and purification system for yeast phosphoglycerate mutase. Investigation of the role of active-site His181. Eur J Biochem 1992, 207(2):709-714.
  • [65]Geladopoulos TP, Sotiroudis TG, Evangelopoulos AE: A malachite green colorimetric assay for protein phosphatase activity. Anal Biochem 1991, 192(1):112-116.
  • [66]Kao FF, Mahmuda S, Pinto R, Triccas JA, West NP, Britton WJ: The secreted lipoprotein, MPT83, of Mycobacterium tuberculosis is recognized during human tuberculosis and stimulates protective immunity in mice. PloS one 2012, 7(5):e34991.
  • [67]Hedrick JL, Smith AJ: Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys 1968, 126(1):155-164.
  文献评价指标  
  下载次数:24次 浏览次数:18次