BMC Genomics | |
Common and specific downstream signaling targets controlled by Tlr2 and Tlr5 innate immune signaling in zebrafish | |
Herman P. Spaink1  Annemarie H. Meijer1  Rubén Marín-Juez2  Shuxin Yang1  | |
[1] Institute of Biology, Leiden University, Leiden, 2300 RA, The Netherlands;Present address: Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim, 61231, Germany | |
关键词: Innate immunity; Pam3CSK4; Flagellin; TLR5; TLR2; Zebrafish; TLR signaling; | |
Others : 1221881 DOI : 10.1186/s12864-015-1740-9 |
|
received in 2015-05-11, accepted in 2015-06-30, 发布年份 2015 | |
【 摘 要 】
Background
Although the responses to many pathogen associated molecular patterns (PAMPs) in cell cultures and extracted organs are well characterized, there is little known of transcriptome responses to PAMPs in whole organisms. To characterize this in detail, we have performed RNAseq analysis of responses of zebrafish embryos to injection of PAMPs in the caudal vein at one hour after exposure. We have compared two ligands that in mammals have been shown to specifically activate the TLR2 and TLR5 receptors: Pam3CSK4 and flagellin, respectively.
Results
We identified a group of 80 common genes that respond with high stringency selection to stimulations with both PAMPs, which included several well-known immune marker genes such as il1b and tnfa. Surprisingly, we also identified sets of 48 and 42 genes that specifically respond to either Pam3CSK4 or flagellin, respectively, after a comparative filtering approach. Remarkably, in the Pam3CSK4 specific set, there was a set of transcription factors with more than 2 fold-change, as confirmed by qPCR analyses, including cebpb, fosb, nr4a1 and egr3. We also showed that the regulation of the Pam3CSK4 and flagellin specifically responding sets is inhibited by knockdown of tlr2 or tlr5, respectively.
Conclusions
Our studies show that Pam3CSK4 and flagellin can stimulate the Tlr2 and Tlr5 signaling pathways leading to common and specific responses in the zebrafish embryo system.
【 授权许可】
2015 Yang et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150804061544391.pdf | 1640KB | download | |
Fig. 6. | 19KB | Image | download |
Fig. 5. | 34KB | Image | download |
Fig. 4. | 16KB | Image | download |
Fig. 3. | 67KB | Image | download |
Fig. 2. | 39KB | Image | download |
Fig. 1. | 34KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Ulevitch RJ. Molecular mechanisms of innate immunity. Immunol Res. 2000; 21(2-3):49-54.
- [2]Masters SL, De Nardo D. Innate immunity. Curr Opin Immunol. 2014; 26:v-vi.
- [3]Wright SD. Toll, a new piece in the puzzle of innate immunity. J Exp Med. 1999; 189(4):605-609.
- [4]Kopp EB, Medzhitov R. The Toll-receptor family and control of innate immunity. Curr Opin Immunol. 1999; 11(1):13-18.
- [5]Tan RS, Ho B, Leung BP, Ding JL. TLR cross-talk confers specificity to innate immunity. Int Rev Immunol. 2014; 33(6):443-453.
- [6]Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003; 171(6):3154-3162.
- [7]Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S et al.. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol. 2003; 33(11):2987-2997.
- [8]Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol. 2002; 32(7):1958-1968.
- [9]Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010; 14(11):2592-2603.
- [10]Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004; 4(7):499-511.
- [11]Striz I, Brabcova E, Kolesar L, Sekerkova A. Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci. 2014; 126(9):593-612.
- [12]Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, Arts P, Garritsen A, van Eenennaam H, Sturm P et al.. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A. 2014; 111(42):E4478-E4484.
- [13]Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003; 24(10):528-533.
- [14]Gong J, Wei T. Structure modeling of Toll-like receptors. Methods Mol Biol. 2014; 1169:45-53.
- [15]Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al.. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998; 282(5396):2085-2088.
- [16]Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001; 410(6832):1099-1103.
- [17]Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol. 2001; 13(7):933-940.
- [18]Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002; 169(1):10-14.
- [19]Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med. 2005; 202(12):1715-1724.
- [20]Ding A, Yu H, Yang J, Shi S, Ehrt S. Induction of macrophage-derived SLPI by Mycobacterium tuberculosis depends on TLR2 but not MyD88. Immunology. 2005; 116(3):381-389.
- [21]McBride A, Konowich J, Salgame P. Host defense and recruitment of Foxp3(+) T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. Plos Pathog. 2013; 9(6):e1003397.
- [22]Drage MG, Tsai HC, Pecora ND, Cheng TY, Arida AR, Shukla S, Rojas RE, Seshadri C, Moody DB, Boom WH et al.. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol. 2010; 17(9):1088-1095.
- [23]Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 2009; 258(1):29-37.
- [24]Means TK, Wang S, Lien E, Yoshimura A, Golenbock DT, Fenton MJ. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol. 1999; 163(7):3920-3927.
- [25]Kanczkowski W, Morawietz H, Ziegler CG, Funk RH, Schmitz G, Zacharowski K, Mohn CE, Ehrhart-Bornstein M, Bornstein SR. Pam3CSK4 and LTA-TLRs ligands associated with microdomains induce IL8 production in human adrenocortical cancer cells. Horm Metab Res. 2007; 39(6):457-460.
- [26]Lombardi V, Van Overtvelt L, Horiot S, Moussu H, Chabre H, Louise A, Balazuc AM, Mascarell L, Moingeon P. Toll-like receptor 2 agonist Pam3CSK4 enhances the induction of antigen-specific tolerance via the sublingual route. Clin Exp Allergy. 2008; 38(11):1819-1829.
- [27]Mintz M, Mintz D, Ilia-Ezra R, Shpigel NY. Pam3CSK4/TLR2 signaling elicits neutrophil recruitment and restricts invasion of Escherichia coli P4 into mammary gland epithelial cells in a murine mastitis model. Vet Immunol Immunopathol. 2013; 152(1-2):168-175.
- [28]Agrawal S, Gollapudi S, Gupta S, Agrawal A. Dendritic cells from the elderly display an intrinsic defect in the production of IL-10 in response to lithium chloride. Exp Gerontol. 2013; 48(11):1285-1292.
- [29]Cabanski M, Wilhelm J, Zaslona Z, Steinmuller M, Fink L, Seeger W, Lohmeyer J. Genome-wide transcriptional profiling of mononuclear phagocytes recruited to mouse lungs in response to alveolar challenge with the TLR2 agonist Pam3CSK4. Am J Physiol Lung Cell Mol Physiol. 2009; 297(4):L608-L618.
- [30]Stridh L, Ek CJ, Wang X, Nilsson H, Mallard C. Regulation of Toll-like receptors in the choroid plexus in the immature brain after systemic inflammatory stimuli. Translational Stroke Res. 2013; 4(2):220-227.
- [31]Willett CE, Cortes A, Zuasti A, Zapata AG. Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn. 1999; 214(4):323-336.
- [32]Davidson AJ, Zon LI. The ’definitive’ (and ’primitive’) guide to zebrafish hematopoiesis. Oncogene. 2004; 23(43):7233-7246.
- [33]Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 2004; 28(1):9-28.
- [34]van der Vaart M, van Soest JJ, Spaink HP, Meijer AH. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis Model Mech. 2013; 6(3):841-854.
- [35]Liu Y, Li M, Fan S, Lin Y, Lin B, Luo F, Zhang C, Chen S, Li Y, Xu A. A unique feature of Toll/IL-1 receptor domain-containing adaptor protein is partially responsible for lipopolysaccharide insensitivity in zebrafish with a highly conserved function of MyD88. J Immunol. 2010; 185(6):3391-3400.
- [36]Meijer AH, Gabby Krens SF, Medina Rodriguez IA, He S, Bitter W, Ewa Snaar-Jagalska B, Spaink HP. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol. 2004; 40(11):773-783.
- [37]Fan S, Chen S, Liu Y, Lin Y, Liu H, Guo L, Lin B, Huang S, Xu A. Zebrafish TRIF, a Golgi-localized protein, participates in IFN induction and NF-kappaB activation. J Immunol. 2008; 180(8):5373-5383.
- [38]Jault C, Pichon L, Chluba J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol. 2004; 40(11):759-771.
- [39]Stockhammer OW, Rauwerda H, Wittink FR, Breit TM, Meijer AH, Spaink HP. Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Mol Immunol. 2010; 48(1-3):179-190.
- [40]Phelan PE, Mellon MT, Kim CH. Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). Mol Immunol. 2005; 42(9):1057-1071.
- [41]Stockhammer OW, Zakrzewska A, Hegedus Z, Spaink HP, Meijer AH. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J Immunol. 2009; 182(9):5641-5653.
- [42]van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol. 2011; 12:58. BioMed Central Full Text
- [43]Marin-Juez R, Jong-Raadsen S, Yang S, Spaink HP. Hyperinsulinemia induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J Endocrinol. 2014; 222(2):229-241.
- [44]Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-359.
- [45]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2079.
- [46]Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genet Res. 2012; 22(10):2008-2017.
- [47]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10):R106. BioMed Central Full Text
- [48]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols. 2008; 4(1):44-57.
- [49]Veneman WJ, de Sonneville J, van der Kolk KJ, Ordas A, Al-Ars Z, Meijer AH, Spaink HP. Analysis of RNAseq datasets from a comparative infectious disease zebrafish model using GeneTiles bioinformatics. Immunogenetics. 2014; 67(3):135-147.
- [50]Ballouz S, Verleyen W, Gillis J. Guidance for RNA-seq co-expression network construction and analysis: safety in numbers. Bioinformatics. 2015; 31(13):2123-2130.
- [51]Veneman WJ, Stockhammer OW, de Boer L, Zaat SA, Meijer AH, Spaink HP. A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics. 2013; 14:255. BioMed Central Full Text
- [52]Choi YJ, Jung J, Chung HK, Im E, Rhee SH. PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. Faseb J. 2013; 27(1):243-254.
- [53]Bielinski SJ, Hall JL, Pankow JS, Boerwinkle E, Matijevic-Aleksic N, He M, Chambless L, Folsom AR. Genetic variants in TLR2 and TLR4 are associated with markers of monocyte activation: the atherosclerosis risk in communities MRI study. Hum Genet. 2011; 129(6):655-662.
- [54]Fang J, Fang D, Silver PB, Wen F, Li B, Ren X, Lin Q, Caspi RR, Su SB. The role of TLR2, TRL3, TRL4, and TRL9 signaling in the pathogenesis of autoimmune disease in a retinal autoimmunity model. Invest Ophthalmol Vis Sci. 2010; 51(6):3092-3099.