期刊论文详细信息
BMC Genomics
Deciphering gamma-decalactone biosynthesis in strawberry fruit using a combination of genetic mapping, RNA-Seq and eQTL analyses
Iraida Amaya1  Miguel A Botella2  Victoriano Valpuesta2  Eduardo Cruz-Rus3  José F Sánchez-Sevilla3 
[1] Horticultural Sciences Department, University of Florida, 1301 Fifield Hall, Gainesville, FL 32611, USA;Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-CSIC-UMA), 29071 Málaga, Spain;Instituto Andaluz de Investigación y Formación Agraria y Pesquera, IFAPA-Centro de Churriana, Cortijo de la Cruz s/n, 29140 Málaga, Spain
关键词: eQTL;    Lactone;    Hydroxylase;    Flavor;    Desaturase;    Crop improvement;    Aroma;   
Others  :  1217452
DOI  :  10.1186/1471-2164-15-218
 received in 2013-11-14, accepted in 2014-03-17,  发布年份 2014
PDF
【 摘 要 】

Background

Understanding the basis for volatile organic compound (VOC) biosynthesis and regulation is of great importance for the genetic improvement of fruit flavor. Lactones constitute an essential group of fatty acid-derived VOCs conferring peach-like aroma to a number of fruits including peach, plum, pineapple and strawberry. Early studies on lactone biosynthesis suggest that several enzymatic pathways could be responsible for the diversity of lactones, but detailed information on them remained elusive. In this study, we have integrated genetic mapping and genome-wide transcriptome analysis to investigate the molecular basis of natural variation in γ-decalactone content in strawberry fruit.

Results

As a result, the fatty acid desaturase FaFAD1 was identified as the gene underlying the locus at LGIII-2 that controls γ-decalactone production in ripening fruit. The FaFAD1 gene is specifically expressed in ripe fruits and its expression fully correlates with the presence of γ-decalactone in all 95 individuals of the mapping population. In addition, we show that the level of expression of FaFAH1, with similarity to cytochrome p450 hydroxylases, significantly correlates with the content of γ-decalactone in the mapping population. The analysis of expression quantitative trait loci (eQTL) suggests that the product of this gene also has a regulatory role in the biosynthetic pathway of lactones.

Conclusions

Altogether, this study provides mechanistic information of how the production of γ-decalactone is naturally controlled in strawberry, and proposes enzymatic activities necessary for the formation of this VOC in plants.

【 授权许可】

   
2014 Sánchez-Sevilla et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150706171538119.pdf 2887KB PDF download
Figure 6. 69KB Image download
Figure 5. 96KB Image download
Figure 4. 91KB Image download
Figure 3. 90KB Image download
Figure 2. 112KB Image download
Figure 1. 130KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Pérez A, Sanz A: Strawberry flavor. In Handbook of Fruit and Vegetable Flavors. Edited by Hui HY. Hoboken, New Jersey: John Wiley & Sons, Inc; 2010:437-455.
  • [2]Latrasse A: Fruits III. In Volatile Compounds in Fruits and Beverages. Edited by Maarse H. New York: Marcek Dekker, Inc; 1991:329-387.
  • [3]Zabetakis I, Holden MA: Strawberry flavour: analysis and biosynthesis. J Sci Food Agric 1997, 74:421-434.
  • [4]Ménager I, Jost M, Aubert C: Changes in physicochemical characteristics and volatile constituents of strawberry (Cv. Cigaline) during maturation. J Agric Food Chem 2004, 52:1248-1254.
  • [5]Jetti RR, Yang E, Kurnianta A, Finn C, Qian MC: Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis. J Food Sci 2007, 72:S487-S496.
  • [6]Zorrilla-Fontanesi Y, Rambla J-L, Cabeza A, Medina JJ, Sánchez-Sevilla JF, Valpuesta V, Botella MA, Granell A, Amaya I: Genetic analysis of strawberry fruit aroma and identification of O-methyltransferase FaOMT as the locus controlling natural variation in mesifurane content. Plant Physiol 2012, 159:851-870.
  • [7]Osorio S, Muñoz C, Valpuesta V: Physiology and biochemistry of fruit flavors. In Handbook of Fruit and Vegetable Flavors. Edited by Hui HY. Hoboken, New Jersey: John Wiley & Sons, Inc; 2010:25-43.
  • [8]Aragüez I, Valpuesta Fernández V: Metabolic engineering of aroma components in fruits. Biotechnol J 2013, 8:1144-1158.
  • [9]Schwab W, Davidovich-Rikanati R, Lewinsohn E: Biosynthesis of plant-derived flavor compounds. Plant J 2008, 54:712-732.
  • [10]Schöttler M, Boland W: Biosynthesis of dodecano-4-lactone in ripening fruits: crucial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (Prunus persica var. nucipersica) and the strawberry (Fragaria ananassa). Helv Chim Acta 1996, 79:1488-1496.
  • [11]Olbricht K, Grafe C, Weiss K, Ulrich D: Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed 2008, 127:87-93.
  • [12]Douillard C, Guichard E: Comparison by multidimensional analysis of concentrations of volatile compounds in fourteen frozen strawberry varieties [aroma, furaneol, mesifurane]. Sci Aliment 1989, 9:53-76.
  • [13]Husain Q: Chemistry and biochemistry of some vegetable flavors. In Handbook of Fruit and Vegetable Flavors. Edited by Hui HY. Hoboken, New Jersey: John Wiley & Sons, Inc; 2010:575-625.
  • [14]Sánchez G, Venegas-Calerón M, Salas JJ, Monforte A, Badenes ML, Granell A: An integrative “omics” approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 2013, 14:343. BioMed Central Full Text
  • [15]Xi W-P, Zhang B, Liang L, Shen J-Y, Wei W-W, Xu C-J, Allan AC, Ferguson IB, Chen K-S: Postharvest temperature influences volatile lactone production via regulation of acyl-CoA oxidases in peach fruit. Plant Cell Environ 2012, 35:534-545.
  • [16]Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C: Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genetics & Genomes 2013, 9:189-204.
  • [17]Larsen M, Poll L, Olsen C: Evaluation of the aroma composition of some strawberry (Fragaria ananassa Duch) cultivars by use of odour threshold values. Zeitschrift für Lebensmittel untersuchung und Forschung 1992, 195:536-539.
  • [18]Rousseau-Gueutin M, Lerceteau-Kohler E, Barrot L, Sargent DJ, Monfort A, Simpson D, Arus P, Guerin G, Denoyes-Rothan B: Comparative genetic mapping between octoploid and diploid fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry. Genetics 2008, 179:2045-2060.
  • [19]Zorrilla-Fontanesi Y, Cabeza A, Domínguez P, Medina JJ, Valpuesta V, Denoyes-Rothan B, Sánchez-Sevilla JF, Amaya I: Quantitative trait loci and underlying candidate genes controlling agronomical and fruit quality traits in octoploid strawberry (Fragaria × ananassa). Theor Appl Gen 2011, 123:755-778.
  • [20]Isobe SN, Hirakawa H, Sato S, Maeda F, Ishikawa M, Mori T, Yamamoto Y, Shirasawa K, Kimura M, Fukami M, Hashizume F, Tsuji T, Sasamoto S, Kato M, Nanri K, Tsuruoka H, Minami C, Takahashi C, Wada T, Ono A, Kawashima K, Nakazaki N, Kishida Y, Kohara M, Nakayama S, Yamada M, Fujishiro T, Watanabe A, Tabata S: Construction of an integrated high density simple sequence repeat linkage map in cultivated strawberry (fragaria x ananassa) and its applicability. DNA Res 2013, 20:79-92.
  • [21]Sargent DJ, Passey T, Šurbanovski N, Lopez Girona E, Kuchta P, Davik J, Harrison R, Passey A, Whitehouse AB, Simpson DW: A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theor Appl Gen 2012, 124:1229-1240.
  • [22]Bombarely A, Merchante C, Csukasi F, Cruz-Rus E, Caballero JL, Medina-Escobar N, Blanco-Portales R, Botella MA, Muñoz-Blanco J, Sánchez-Sevilla JF, Valpuesta V: Generation and analysis of ESTs from strawberry (Fragaria xananassa) fruits and evaluation of their utility in genetic and molecular studies. BMC Genomics 2010, 11:503. BioMed Central Full Text
  • [23]Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton J-M, Rees DJG, Williams KP, Holt SH, Rojas JJR, Chatterjee M, et al.: The genome of woodland strawberry (Fragaria vesca). Nature Gen 2011, 43:109-116.
  • [24]Martin LBB, Fei Z, Giovannoni JJ, Rose JKC: Catalyzing plant science research with RNA-seq. Front Plant Sci 2013, 4:66.
  • [25]Higgins J, Magusin A, Trick M, Fraser F, Bancroft I: Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 2012, 13:1-1. BioMed Central Full Text
  • [26]Manning K: Isolation of nucleic acids from plants by differential solvent precipitation. Anal Biochem 1991, 195:45-50.
  • [27]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36. BioMed Central Full Text
  • [28]Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L: Differential analysis of gene regulation at transcript resolution with rNA-seq. Nat Biotechnol 2012, 31:46-53.
  • [29]Conesa A, Götz S: Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008, 2008:619832.
  • [30]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
  • [31]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [32]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29:2002-2007.
  • [33]Salvatierra A, Pimentel P, Moya-León MA, Caligari PDS, Herrera R: Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochemistry 2010, 71:1839-1847.
  • [34]Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J: Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 1994, 6:147-158.
  • [35]van de Loo FJ, Broun P, Turner S, Somerville C: An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proc Natl Acad Sci U S A 1995, 92:6743-6747.
  • [36]Hernández ML, Mancha M, Martínez-Rivas JM: Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 2005, 66:1417-1426.
  • [37]Kliebenstein D: Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 2009, 60:93-114.
  • [38]Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 2005, 142:169-196.
  • [39]Liu S, Yeh C-T, Tang HM, Nettleton D, Schnable PS: Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 2012, 7:e36406.
  • [40]McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT: Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 2004, 37:156-173.
  • [41]Shanklin J, Cahoon EB: Desaturation and related modifications of fatty acids 1. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:611-641.
  • [42]Shanklin J, Guy JE, Mishra G, Lindqvist Y: Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J Biol Chem 2009, 284:18559-18563.
  • [43]Broun P, Boddupalli S, Somerville C: A bifunctional oleate 12-hydroxylase: desaturase from Lesquerella fendleri. Plant J 1998, 13:201-210.
  • [44]Cao S, Zhou X-R, Wood CC, Green AG, Singh SP, Liu L, Liu Q: A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol 2013, 13:5. BioMed Central Full Text
  • [45]Broadwater JA, Whittle E, Shanklin J: Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 2002, 277:15613-15620.
  • [46]Broun P, Shanklin J, Whittle E, Somerville C: Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 1998, 282:1315-1317.
  • [47]Pinot F, Beisson F: Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J 2010, 278:195-205.
  • [48]Waché Y, Aguedo M, Nicaud JM, Belin JM: Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica. Appl Microbiol Biotechnol 2003, 61:393-404.
  • [49]Ubeda C, San-Juan F, Concejero B, Callejón RM, Troncoso AM, Morales ML, Ferreira V, Hernández-Orte P: Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. J Agric Food Chem 2012, 60:6095-6102.
  • [50]Dudareva N, Pichersky E: Metabolic engineering of plant volatiles. Curr Opin Biotechnol 2008, 19:181-189.
  文献评价指标  
  下载次数:29次 浏览次数:9次