期刊论文详细信息
BMC Microbiology
Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice
Virginia L Miller1  Gregory D Sempowski2  Richard Frothingham4  Eric H Weening1  Rodrigo J Gonzalez3 
[1] Department of Genetics, University of North Carolina, Chapel Hill, NC, USA;Department of Pathology, Duke University Medical Center, Durham, NC, USA;Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA;Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
关键词: Bacterial dissemination;    In vivo imaging;    Bioluminescence;    Plague;   
Others  :  1221817
DOI  :  10.1186/1471-2180-12-147
 received in 2012-05-11, accepted in 2012-07-24,  发布年份 2012
PDF
【 摘 要 】

Background

Plague is caused by Yersinia pestis, a bacterium that disseminates inside of the host at remarkably high rates. Plague bacilli disrupt normal immune responses in the host allowing for systematic spread that is fatal if left untreated. How Y. pestis disseminates from the site of infection to deeper tissues is unknown. Dissemination studies for plague are typically performed in mice by determining the bacterial burden in specific organs at various time points. To follow bacterial dissemination during plague infections in mice we tested the possibility of using bioluminescence imaging (BLI), an alternative non-invasive approach. Fully virulent Y. pestis was transformed with a plasmid containing the luxCDABE genes, making it able to produce light; this lux-expressing strain was used to infect mice by subcutaneous, intradermal or intranasal inoculation.

Results

We successfully obtained images from infected animals and were able to follow bacterial dissemination over time for each of the three different routes of inoculation. We also compared the radiance signal from animals infected with a wild type strain and a Δcaf1ΔpsaA mutant that we previously showed to be attenuated in colonization of the lymph node and systemic dissemination. Radiance signals from mice infected with the wild type strain were larger than values obtained from mice infected with the mutant strain (linear regression of normalized values, P < 0.05).

Conclusions

We demonstrate that BLI is useful for monitoring dissemination from multiple inoculation sites, and for characterization of mutants with defects in colonization or dissemination.

【 授权许可】

   
2012 Gonzalez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804003219304.pdf 2621KB PDF download
Figure 6. 65KB Image download
Figure 5. 148KB Image download
Figure 4. 104KB Image download
Figure 3. 115KB Image download
Figure 2. 26KB Image download
Figure 1. 27KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Zietz BP, Dunkelberg H: The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Envir Heal 2004, 207(2):165-178.
  • [2]Zhou D, Yang R: Molecular Darwinian evolution of virulence in Yersinia pestis. Infect Immun 2009, 77(6):2242-2250.
  • [3]Perry RD, Fetherston JD: Yersinia pestis–etiologic agent of plague. Clin Microbiol Rev 1997, 10(1):35-66.
  • [4]Anisimov AP, Amoako KK: Treatment of plague: promising alternatives to antibiotics. J Med Microbiol 2006, 55(Pt 11):1461-1475.
  • [5]Gage KL, Kosoy MY: Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 2005, 50:505-528.
  • [6]Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L: Plague: past, present, and future. PLoS Med 2008, 5(1):e3.
  • [7]Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D: Fleas and flea-borne diseases. Int J Infect Dis 2010, 14(8):e667-e676.
  • [8]Galimand M, Carniel E, Courvalin P: Resistance of Yersinia pestis to antimicrobial agents. Antimicrob Agents Chemother 2006, 50(10):3233-3236.
  • [9]Smiley ST: Immune defense against pneumonic plague. Immunol Rev 2008, 225:256-271.
  • [10]Prentice MB, Rahalison L: Plague. Lancet 2007, 369(9568):1196-1207.
  • [11]Wimsatt J, Biggins DE: A review of plague persistence with special emphasis on fleas. J Vec Born Dis 2009, 46(2):85-99.
  • [12]Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O: Plague bacteria target immune cells during infection. Science (New York, NY) 2005, 309(5741):1739-1741.
  • [13]DeLeo FR, Hinnebusch BJ: A plague upon the phagocytes. Nat Med 2005, 11(9):927-928.
  • [14]Matsumoto H, Young GM: Translocated effectors of Yersinia. Curr Opin Microbiol 2009, 12(1):94-100.
  • [15]Guinet F, Avé P, Jones L, Huerre M, Carniel E: Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. PLoS One 2008, 3(2):e1688.
  • [16]Sebbane F, Gardner D, Long D, Gowen BB, Hinnebusch BJ: Kinetics of disease progression and host response in a rat model of bubonic plague. Am J Pathol 2005, 166(5):1427-1439.
  • [17]Massoud TF, Gambhir SS: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003, 17(5):545-580.
  • [18]Kong Y, Subbian S, Cirillo SLG, Cirillo JD: Application of optical imaging to study of extrapulmonary spread by tuberculosis. Tuberculosis (Edinb) 2009, 89:S15-S17.
  • [19]Zincarelli C, Soltys S, Rengo G, Rabinowitz JE: Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008, 16(6):1073-1080.
  • [20]Hyland KV, Asfaw SH, Olson CL, Daniels MD, Engman DM: Bioluminescent imaging of Trypanosoma cruzi infection. Int J Parasitol 2008, 38(12):1391-1400.
  • [21]Hutchens M, Luker GD: Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 2007, 9(10):2315-2322.
  • [22]Contag CH, Bachmann MH: Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002, 4:235-260.
  • [23]Hastings JW: Chemistries and colors of bioluminescent reactions: a review. Gene 1996, 173(1 Spec No):5-11.
  • [24]Lane MC, Alteri CJ, Smith SN, Mobley HLT: Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci U S A 2007, 104(42):16669-16674.
  • [25]Nham T, Filali S, Danne C, Derbise A, Carniel E: Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis. PLoS One 2012, 7(4):e34714.
  • [26]Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL: RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 2006, 103(36):13514-13519.
  • [27]Guinet F, Carniel E: A technique of intradermal injection of Yersinia to study Y. pestis physiopathology. Adv Exp Med Biol 2003, 529:73-78.
  • [28]Van den Broeck W, Derore A, Simoens P: Anatomy and nomenclature of murine lymph nodes: Descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J Immunol Methods 2006, 312(1–2):12-19.
  • [29]Lathem WW, Crosby SD, Miller VL, Goldman WE: Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 2005, 102(49):17786-17791.
  • [30]Weening EH, Cathelyn JS, Kaufman G, Lawrenz MB, Price P, Goldman WE, Miller VL: The dependence of the Yersinia pestis capsule on pathogenesis is influenced by the mouse background. Infect Immun 2011, 79(2):644-652.
  • [31]Price PA, Jin J, Goldman WE: Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation. Proc Natl Acad Sci U S A 2012, 109(8):3083-3088.
  • [32]Arbaji A, Kharabsheh S, Al-Azab S, Al-Kayed M, Amr ZS, Abu Baker M, Chu MC: A 12-case outbreak of pharyngeal plague following the consumption of camel meat, in north-eastern Jordan. Ann Trop Med Parasitol 2005, 99(8):789-793.
  文献评价指标  
  下载次数:46次 浏览次数:27次