期刊论文详细信息
BMC Microbiology
Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry
Oliver Bader1  Uwe Groß1  Raimond Lugert1  Michael Weig1  Abdul Malik Tareen1  Wycliffe Omurwa Masanta2  Andreas Erich Zautner2 
[1] UMG-Labor/Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany;UMG-Labor/Institut für Klinische Chemie - Zentrallabor, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
关键词: Campylobacter jejuni;    PCA;    Principal component analysis;    ICMS;    Intact cell mass spectrometry;    MLST;    Multilocus sequence typing;    Phyloproteomics;    MALDI-TOF species identification;   
Others  :  1142774
DOI  :  10.1186/1471-2180-13-247
 received in 2013-07-17, accepted in 2013-10-30,  发布年份 2013
PDF
【 摘 要 】

Background

Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7m+c. The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt).

Results

Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7m+c+ and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism.

Conclusions

Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

【 授权许可】

   
2013 Zautner et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328144412804.pdf 554KB PDF download
Figure 4. 245KB Image download
Figure 3. 39KB Image download
Figure 2. 29KB Image download
76KB Image download
【 图 表 】

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Dasti JI, Tareen AM, Lugert R, Zautner AE, Groß U: Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 2010, 300(4):205-211.
  • [2]Abbott JD, Dale B, Eldridge J, Jones DM, Sutcliffe EM: Serotyping of Campylobacter jejuni/coli. J Clin Pathol 1980, 33(8):762-766.
  • [3]Penner JL, Hennessy JN: Passive hemagglutination technique for serotyping Campylobacter fetus subsp. jejuni on the basis of soluble heat-stable antigens. J Clin Microbiol 1980, 12(6):732-737.
  • [4]Lior H, Woodward DL, Edgar JA, LaRoche LJ: Serotyping by slide agglutination of Campylobacter jejuni and epidemiology. Lancet 1981, 2(8255):1103-1104.
  • [5]Lior H, Woodward DL, Edgar JA, Laroche LJ, Gill P: Serotyping of Campylobacter jejuni by slide agglutination based on heat-labile antigenic factors. J Clin Microbiol 1982, 15(5):761-768.
  • [6]Enders U, Karch H, Toyka KV, Michels M, Zielasek J, Pette M, Heesemann J, Hartung HP: The spectrum of immune responses to Campylobacter jejuni and glycoconjugates in Guillain-Barre syndrome and in other neuroimmunological disorders. Ann Neurol 1993, 34(2):136-144.
  • [7]Salama SM, Bolton FJ, Hutchinson DN: Application of a new phagetyping scheme to campylobacters isolated during outbreaks. Epidemiol Infect 1990, 104(3):405-411.
  • [8]Duim B, Wassenaar TM, Rigter A, Wagenaar J: High-resolution genotyping of Campylobacter strains isolated from poultry and humans with amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol 1999, 65(6):2369-2375.
  • [9]Kiehlbauch JA, Plikaytis BD, Swaminathan B, Cameron DN, Wachsmuth IK: Restriction fragment length polymorphisms in the ribosomal genes for species identification and subtyping of aerotolerant Campylobacter species. J Clin Microbiol 1991, 29(8):1670-1676.
  • [10]Yan W, Chang N, Taylor DE: Pulsed-field gel electrophoresis of Campylobacter jejuni and Campylobacter coli genomic DNA and its epidemiologic application. J Infect Dis 1991, 163(5):1068-1072.
  • [11]Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R, Maiden MC: Multilocus sequence typing system for Campylobacter jejuni. J Clin Microbiol 2001, 39(1):14-23.
  • [12]Meinersmann RJ, Helsel LO, Fields PI, Hiett KL: Discrimination of Campylobacter jejuni isolates by fla gene sequencing. J Clin Microbiol 1997, 35(11):2810-2814.
  • [13]Dingle KE, Colles FM, Ure R, Wagenaar JA, Duim B, Bolton FJ, Fox AJ, Wareing DR, Maiden MC: Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. Emerg Infect Dis 2002, 8(9):949-955.
  • [14]Sopwith W, Birtles A, Matthews M, Fox A, Gee S, Painter M, Regan M, Syed Q, Bolton E: Campylobacter jejuni multilocus sequence types in humans, northwest England, 2003-2004. Emerg Infect Dis 2006, 12(10):1500-1507.
  • [15]Habib I, Uyttendaele M, De Zutter L: Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol 2010, 27(6):829-834.
  • [16]Sopwith W, Birtles A, Matthews M, Fox A, Gee S, Painter M, Regan M, Syed Q, Bolton E: Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. Emerg Infect Dis 2008, 14(11):1769-1773.
  • [17]Clark CG, Price L, Ahmed R, Woodward DL, Melito PL, Rodgers FG, Jamieson F, Ciebin B, Li A, Ellis A: Characterization of waterborne outbreak-associated Campylobacter jejuni, Walkerton, Ontario. Emerg Infect Dis 2003, 9(10):1232-1241.
  • [18]Zautner AE, Herrmann S, Corso J, Tareen AM, Alter T, Groß U: Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl Environ Microbiol 2011, 77(7):2359-2365.
  • [19]Zautner AE, Ohk C, Tareen AM, Lugert R, Groß U: Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers. BMC Microbiol 2012, 12:171. BioMed Central Full Text
  • [20]Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D: Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009, 49(4):543-551.
  • [21]Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Groß U, Kuhns M: Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 2011, 17(9):1359-1365.
  • [22]Bader O: MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics 2013, 13(5):788-799.
  • [23]Bessede E, Solecki O, Sifre E, Labadi L, Megraud F: Identification of Campylobacter species and related organisms by matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Clin Microbiol Infect 2011, 17(11):1735-1739.
  • [24]Lartigue MF: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infect Genet Evol 2013, 13:230-235.
  • [25]Murray PR: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: usefulness for taxonomy and epidemiology. Clin Microbiol Infect 2010, 16(11):1626-1630.
  • [26]Kuhns M, Zautner AE, Rabsch W, Zimmermann O, Weig M, Bader O, Groß U: Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS One 2012, 7(6):e40004.
  • [27]Feodoroff B, Ellstrom P, Hyytiainen H, Sarna S, Hanninen ML, Rautelin H: Campylobacter jejuni isolates in Finnish patients differ according to the origin of infection. Gut Pathogens 2010, 2(1):22. BioMed Central Full Text
  • [28]Edwards-Jones V, Claydon MA, Evason DJ, Walker J, Fox AJ, Gordon DB: Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J Med Microbiol 2000, 49(3):295-300.
  • [29]Kumar MP, Vairamani M, Raju RP, Lobo C, Anbumani N, Kumar CP, Menon T, Shanmugasundaram S: Rapid discrimination between strains of beta haemolytic streptococci by intact cell mass spectrometry. Indian J Med Res 2004, 119(6):283-288.
  • [30]Lartigue MF, Hery-Arnaud G, Haguenoer E, Domelier AS, Schmit PO, van der Mee-Marquet N, Lanotte P, Mereghetti L, Kostrzewa M, Quentin R: Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2009, 47(7):2284-2287.
  • [31]Barbuddhe SB, Maier T, Schwarz G, Kostrzewa M, Hof H, Domann E, Chakraborty T, Hain T: Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2008, 74(17):5402-5407.
  • [32]Dieckmann R, Helmuth R, Erhard M, Malorny B: Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2008, 74(24):7767-7778.
  • [33]Dieckmann R, Malorny B: Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2011, 77(12):4136-4146.
  • [34]Stephan R, Cernela N, Ziegler D, Pfluger V, Tonolla M, Ravasi D, Fredriksson-Ahomaa M, Hachler H: Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry. J Microbiol Methods 2011, 87(2):150-153.
  • [35]Vasileuskaya-Schulz Z, Kaiser S, Maier T, Kostrzewa M, Jonas D: Delineation of Stenotrophomonas spp. by multi-locus sequence analysis and MALDI-TOF mass spectrometry. Syst Appl Microbiol 2011, 34(1):35-39.
  • [36]Winkler MA, Uher J, Cepa S: Direct analysis and identification of Helicobacter and Campylobacter species by MALDI-TOF mass spectrometry. Anal Chem 1999, 71(16):3416-3419.
  • [37]Fagerquist CK, Miller WG, Harden LA, Bates AH, Vensel WH, Wang G, Mandrell RE: Genomic and proteomic identification of a DNA-binding protein used in the “fingerprinting” of campylobacter species and strains by MALDI-TOF-MS protein biomarker analysis. Anal Chem 2005, 77(15):4897-4907.
  • [38]Mandrell RE, Harden LA, Bates A, Miller WG, Haddon WF, Fagerquist CK: Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2005, 71(10):6292-6307.
  • [39]Kolinska R, Drevinek M, Jakubu V, Zemlickova H: Species identification of Campylobacter jejuni ssp. jejuni and C. coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR. Folia Microbiol 2008, 53(5):403-409.
  • [40]Fagerquist CK, Bates AH, Heath S, King BC, Garbus BR, Harden LA, Miller WG: Sub-speciating Campylobacter jejuni by proteomic analysis of its protein biomarkers and their post-translational modifications. J Proteome Res 2006, 5(10):2527-2538.
  • [41]Tareen AM, Dasti JI, Zautner AE, Groß U, Lugert R: Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 2010, 156(Pt 10):3123-3135.
  • [42]Fearnley C, Manning G, Bagnall M, Javed MA, Wassenaar TM, Newell DG: Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources. J Med Microbiol 2008, 57(Pt 5):570-580.
  • [43]Zautner AE, Tareen AM, Groß U, Lugert R: Chemotaxis in Campylobacter jejuni. Eur J Microbiol Immunol 2012, 2(1):24-31.
  • [44]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [45]Jolley KA, Chan MS, Maiden MC: mlstdbNet - distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 2004, 5:86. BioMed Central Full Text
  文献评价指标  
  下载次数:34次 浏览次数:6次