期刊论文详细信息
BMC Pediatrics
Perinatal stress, brain inflammation and risk of autism-Review and proposal
Theoharis C Theoharides4  Stella Kourembanas2  Anna Karagkouni5  Konstantinos-Dionysios Alysandratos6  Shahrzad Asadi1  Asimenia Angelidou3 
[1] Department of Pharmacy, Tufts Medical Center, Boston, MA 02111, USA;Division of Newborn Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA 02115, USA;Department of Pediatrics, University of Texas Southwestern, Childrens Medical Center, Dallas, TX 75235, USA;Allergy Clinical Research Center, Allergy Section, Attikon General Hospital, Medical School, Athens 12462, Greece;Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA;Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
关键词: Stress;    Prematurity;    Mast cells;    Inflammation;    Brain;    Autism;    Allergy;   
Others  :  1170750
DOI  :  10.1186/1471-2431-12-89
 received in 2011-07-13, accepted in 2012-05-28,  发布年份 2012
PDF
【 摘 要 】

Background

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by varying deficits in social interactions, communication, and learning, as well as stereotypic behaviors. Despite the significant increase in ASD, there are few if any clues for its pathogenesis, hampering early detection or treatment. Premature babies are also more vulnerable to infections and inflammation leading to neurodevelopmental problems and higher risk of developing ASD. Many autism “susceptibility” genes have been identified, but “environmental” factors appear to play a significant role. Increasing evidence suggests that there are different ASD endophenotypes.

Discussion

We review relevant literature suggesting in utero inflammation can lead to preterm labor, while insufficient development of the gut-blood–brain barriers could permit exposure to potential neurotoxins. This risk apparently may increase in parents with “allergic” or autoimmune problems during gestation, or if they had been exposed to stressors. The presence of circulating auto-antibodies against fetal brain proteins in mothers is associated with higher risk of autism and suggests disruption of the blood–brain-barrier (BBB). A number of papers have reported increased brain expression or cerebrospinal fluid (CSF) levels of pro-inflammatory cytokines, especially TNF, which is preformed in mast cells. Recent evidence also indicates increased serum levels of the pro-inflammatory mast cell trigger neurotensin (NT), and of extracellular mitochondrial DNA (mtDNA), which is immunogenic. Gene mutations of phosphatase and tensin homolog (PTEN), the negative regulator of the mammalian target of rapamycin (mTOR), have been linked to higher risk of autism, but also to increased proliferation and function of mast cells.

Summary

Premature birth and susceptibility genes may make infants more vulnerable to allergic, environmental, infectious, or stress-related triggers that could stimulate mast cell release of pro-inflammatory and neurotoxic molecules, thus contributing to brain inflammation and ASD pathogenesis, at least in an endophenotype of ASD patients.

【 授权许可】

   
2012 Angelidou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417025021314.pdf 472KB PDF download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Johnson CP, Myers SM: Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120:1183-1215.
  • [2]Volkmar FR, State M, Klin A: Autism and autism spectrum disorders: diagnostic issues for the coming decade. J Child Psychol Psychiatry 2009, 50:108-115.
  • [3]Matson JL, Kozlowski AM: Autistic regression. Res Autism Spectr Disord 2010, 4:340-345.
  • [4]Zappella M: Autistic regression with and without EEG abnormalities followed by favourable outcome. Brain Dev 2010, 32:739-745.
  • [5]Fombonne E: Epidemiology of pervasive developmental disorders. Pediatr Res 2009, 65:591-598.
  • [6]Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyck PC: Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 2009, 5:1395-1403.
  • [7]Luft R, Efendic S, Hokfelt T: Somatostatin: both hormone and neurotransmitter? Diabetologia 1978, 14:1-13.
  • [8]Levy SE, Mandell DS, Schultz RT: Autism. Lancet 2009, 374:1627-1638.
  • [9]Durkin MS, Maenner MJ, Meaney FJ, Levy S, DiGuiseppi C, Nicholas JS, Kirby RS, Pinto-Martin JA, Schieve LA: Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a U.S. cross-sectional study. PLoS One 2010, 5:11551. e
  • [10]Herbert MR: Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 2010, 23:103-110.
  • [11]Miles JH: Autism spectrum disorders-A genetics review. Genet Med 2011, 13:278-294.
  • [12]Careaga M, Van de WJ, Ashwood P: Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 2010, 7:283-292.
  • [13]Chez MG, Guido-Estrada N: Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics 2010, 7:293-301.
  • [14]MacDorman MF, Declercq E, Zhang J: Obstetrical intervention and the singleton preterm birth rate in the United States from 1991–2006. Am J Public Health 2010, 100:2241-2247.
  • [15]Vojdani A: Antibodies as predictors of complex autoimmune diseases and cancer. Int J Immunopathol Pharmacol 2008, 21(3):553-566. Erratum in: Int J Immunopathol Pharmacol. 2008 Oct-Dec;21(4):following 1051. PMID:18831922
  • [16]Jauniaux E, Van Oppenraaij RH, Burton GJ: Obstetric outcome after early placental complications. Curr Opin Obstet Gynecol 2010, 22:452-457.
  • [17]Dubicke A, Fransson E, Centini G, Andersson E, Bystrom B, Malmstrom A, Petraglia F, Sverremark-Ekstrom E, Ekman-Ordeberg G: Pro-inflammatory and anti-inflammatory cytokines in human preterm and term cervical ripening. J Reprod Immunol 2010, 84:176-185.
  • [18]Snegovskikh VV, Schatz F, Arcuri F, Toti P, Kayisli UA, Murk W, Guoyang L, Lockwood CJ, Norwitz ER: Intra-amniotic infection upregulates decidual cell vascular endothelial growth factor (VEGF) and neuropilin-1 and −2 expression: implications for infection-related preterm birth. Reprod Sci 2009, 16:767-780.
  • [19]Thaxton JE, Nevers TA, Sharma S: TLR-mediated preterm birth in response to pathogenic agents. Infect Dis Obstet Gynecol 2010., 2010378472. Epub 2010 Aug 23
  • [20]Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL Jr, Moore M, Ringer SA, Volpe JJ, du Plessis AJ: Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics 2008, 121:758-765.
  • [21]Johnson S, Hollis C, Kochhar P, Hennessy E, Wolke D, Marlow N: Autism spectrum disorders in extremely preterm children. J Pediatr 2010, 156:525-531.
  • [22]Martin JA: Preterm Births –- United States, 2007. MMWR Surveill Summ 2011, 60:78-79.
  • [23]Adams-Chapman I: Neurodevelopmental outcome of the late preterm infant. Clin Perinatol 2006, 33:947-964.
  • [24]Argyropoulou MI: Brain lesions in preterm infants: initial diagnosis and follow-up. Pediatr Radiol 2010, 40:811-818.
  • [25]Valent P, Akin C, Arock M, Brockow K, Butterfield JH, Carter MC, Castells M, Escribano L, Hartmann K, Lieberman P, Nedoszytko B, Orfao A, Schwartz LB, Sotlar K, Sperr WR, Triggiani M, Valenta R, Horny HP, Metcalfe DD: Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol 2012, 157(3):215-25. Epub 2011 Oct 27
  • [26]Volpe JJ: The encephalopathy of prematurity–brain injury and impaired brain development inextricably intertwined. Semin Pediatr Neurol 2009, 16:167-178.
  • [27]Johnson S, Marlow N: Preterm birth and childhood psychiatric disorders. Pediatr Res 2011, 69(5 Pt 2):11R-8R.
  • [28]Limperopoulos C: Autism spectrum disorders in survivors of extreme prematurity. Clin Perinatol 2009, 36:791-805. vi
  • [29]Kaindl AM, Favrais G, Gressens P: Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 2009, 24:1112-1118.
  • [30]Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I: Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 2011, 29:663-671.
  • [31]Lin CY, Chang YC, Wang ST, Lee TY, Lin CF, Huang CC: Altered inflammatory responses in preterm children with cerebral palsy. Ann Neurol 2010, 68:204-212.
  • [32]Rovira N, Alarcon A, Iriondo M, Ibañez M, Poo P, Cusi V, Agut T, Pertierra A, Krauel X: Impact of histological chorioamnionitis, funisitis and clinical chorioamnionitis on neurodevelopmental outcome of preterm infants. Early Hum Dev 2011, 87(4):253-257. Epub 2011 Feb 26. PMID:21354722
  • [33]Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR, Benson CB, Avery L, Stewart J, Soul JS, Ringer SA, Volpe JJ, duPlessis AJ: Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 2007, 120:584-593.
  • [34]Amin SB, Smith T, Wang H: Is neonatal jaundice associated with Autism Spectrum Disorders: a systematic review. J Autism Dev Disord 2011, 41:1455-1463.
  • [35]Levy S, Zoltak B, Saelens T: A comparison of obstetrical records of autistic and nonautistic referrals for psychoeducational evaluations. J Autism Dev Disord 1988, 18:573-581.
  • [36]Schieve LA, Baio J, Rice CE, Durkin M, Kirby RS, Drews-Botsch C, Miller LA, Nicholas JS, Cunniff CM: Risk for cognitive deficit in a population-based sample of U.S. children with autism spectrum disorders: variation by perinatal health factors. Disabil Health J 2010, 3:202-212.
  • [37]Ehninger D, Sano Y, de Vries PJ, Dies K, Franz D, Geschwind DH, Kaur M, Lee YS, Li W, Lowe JK, Nakagawa JA, Sahin M, Smith K, Whittemore V, Silva AJ: Gestational immune activation and Tsc2 haploinsufficiency cooperate to disrupt fetal survival and may perturb social behavior in adult mice. Mol Psychiatry 2012, 17(1):62-70. Epub 2010 Nov 16. Erratum in: Mol Psychiatry. 2012 Apr;17(4):469. PMID:21079609
  • [38]Kleinman JM, Robins DL, Ventola PE, Pandey J, Boorstein HC, Esser EL, Wilson LB, Rosenthal MA, Sutera S, Verbalis AD, Barton M, Hodgson S, Green J, Dumont-Mathieu T, Volkmar F, Chawarska K, Klin A, Fein D: The modified checklist for autism in toddlers: a follow-up study investigating the early detection of autism spectrum disorders. J Autism Dev Disord 2008, 38:827-839.
  • [39]Pinto-Martin JA, Levy SE, Feldman JF, Lorenz JM, Paneth N, Whitaker AH: Prevalence of autism spectrum disorder in adolescents born weighing <2000 grams. Pediatrics 2011, 128:883-891.
  • [40]Maimburg RD, Vaeth M: Perinatal risk factors and infantile autism. Acta Psychiatr Scand 2006, 114:257-264.
  • [41]Brimacombe M, Ming X, Lamendola M: Prenatal and birth complications in autism. Matern Child Health J 2007, 11:73-79.
  • [42]Buchmayer S, Johansson S, Johansson A, Hultman CM, Sparen P, Cnattingius S: Can association between preterm birth and autism be explained by maternal or neonatal morbidity? Pediatrics 2009, 124:e817-e825.
  • [43]Hultman CM, Sparen P, Cnattingius S: Perinatal risk factors for infantile autism. Epidemiology 2002, 13:417-423.
  • [44]Dodds L, Fell DB, Shea S, Armson BA, Allen AC, Bryson S: The role of prenatal, obstetric and neonatal factors in the development of autism. J Autism Dev Disord 2010.
  • [45]Gardener H, Spiegelman D, Buka SL: Prenatal risk factors for autism: comprehensive meta-analysis. Br J Psychiatry 2009, 195:7-14.
  • [46]Lord C, Mulloy C, Wendelboe M, Schopler E: Pre- and perinatal factors in high-functioning females and males with autism. J Autism Dev Disord 1991, 21:197-209.
  • [47]Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA: Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A 2007, 104:12796-12800.
  • [48]Stein D, Weizman A, Ring A, Barak Y: Obstetric complications in individuals diagnosed with autism and in healthy controls. Compr Psychiatry 2006, 47:69-75.
  • [49]Theoharides TC, Makris M, Kalogeromitros D: Allergic inflammation and adipocytokines. Int J Immunopathol Pharmacol 2008, 21:1-4.
  • [50]Tilg H, Moschen AR: Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006, 6:772-783.
  • [51]Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996, 334:292-295.
  • [52]Dardeno TA, Chou SH, Moon HS, Chamberland JP, Fiorenza CG, Mantzoros CS: Leptin in human physiology and therapeutics. Front Neuroendocrinol 2010, 31:377-393.
  • [53]Hauguel-de MS, Lepercq J, Catalano P: The known and unknown of leptin in pregnancy. Am J Obstet Gynecol 2006, 194:1537-1545.
  • [54]Ashwood P, Kwong C, Hansen R, Hertz-Picciotto I, Croen L, Krakowiak P, Walker W, Pessah IN, Van de Water JV: Brief Report: Plasma leptin levels are elevated in autism: Association with early onset phenotype? J Autism Dev Disord 2007, 38:169-175.
  • [55]Blardi P, De LA, D'Ambrogio T, GV , LC , AA , JH : Long-term plasma levels of leptin and adiponectin in Rett Syndrome. Clin Endocrinol (Oxf) 2008, 70:706-709.
  • [56]Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M: Neonatal leptin treatment reverses developmental programming. Endocrinology 2005, 146:4211-4216.
  • [57]Taildeman J, Perez-Novo CA, Rottiers I, Ferdinande L, Waeytens A, De C, V , C B, Demetter P, Waelput W, Braet K, Cuvelier CA: Human mast cells express leptin and leptin receptors. Histochem Cell Biol 2009, 131:703-711.
  • [58]Sacco R, Curatolo P, Manzi B, Militerni R, Bravaccio C, Frolli A, Lenti C, Saccani M, Elia M, Reichelt KL, Pascucci T, Puglisi-Allegra S, Persico AM: Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res 2010, 3:237-252.
  • [59]Weiss LA, Arking DE, Daly MJ, Chakravarti A: A genome-wide linkage and association scan reveals novel loci for autism. Nature 2009, 461:802-808.
  • [60]Smalley SL: Autism and tuberous sclerosis. J Autism Dev Disord 1998, 28:407-414.
  • [61]Wulffaert J, Van Berckelaer-Onnes IA, Scholte EM: Autistic disorder symptoms in Rett syndrome. Autism 2009, 13:567-581.
  • [62]Ronald A, Hoekstra RA: Autism spectrum disorders and autistic traits: a decade of new twin studies. Am J Med Genet B Neuropsychiatr Genet 2011, 156B:255-274.
  • [63]Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, Miller J, Fedele A, Collins J, Smith K, Lotspeich L, Croen LA, Ozonoff S, Lajonchere C, Grether JK, Risch N: Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011, 68(11):1095-1102. Epub 2011 Jul 4. PMID:21727249
  • [64]Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M: How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. NeuroToxicol 2008, 29:190-201.
  • [65]Zhang TY, Meaney MJ: Epigenetics and the environmental regulation of the genome and its function. Annu Rev Psychol 2010, 61:439-449.
  • [66]Hoeffer CA, Klann E: mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010, 33:67-75.
  • [67]Redfern RE, Daou MC, Li L, Munson M, Gericke A, Ross AH: A mutant form of PTEN linked to autism. Protein Sci 2010, 19:1948-1956.
  • [68]Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM: Activation and function of the mTORC1 pathway in mast cells. J Immunol 2008, 180:4586-4595.
  • [69]Furumoto Y, Charles N, Olivera A, Leung WH, Dillahunt S, Sargent JL, Tinsley K, Odom S, Scott E, Wilson TM, Ghoreschi K, Kneilling M, Chen M, Lee DM, Bolland S, Rivera J: PTEN deficiency in mast cells causes a mastocytosis-like proliferative disease that heightens allergic responses and vascular permeability. Blood 2011, 118:5466-5475.
  • [70]Larsson HJ, Eaton WW, Madsen KM, Vestergaard M, Olesen AV, Agerbo E, Schendel D, Thorsen P, Mortensen PB: Risk factors for autism: perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol 2005, 161:916-925.
  • [71]Gentile S: Drug treatment for mood disorders in pregnancy. Curr Opin Psychiatry 2011, 24:34-40.
  • [72]DiMaggio C, Sun LS, Li G: Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg 2011, 113:1143-1151.
  • [73]Sprung J, Flick RP, Katusic SK, Colligan RC, Barbaresi WJ, Bojanic K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO: Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 2012, 87:120-129.
  • [74]Young HA, Geier DA, Geier MR: Thimerosal exposure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci 2008, 271:110-118.
  • [75]Hertz-Picciotto I, Park HY, Dostal M, Kocan A, Trnovec T, Sram R: Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol 2008, 102:146-154.
  • [76]Grandjean P, Landrigan PJ: Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368:2167-2178.
  • [77]Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Alysandratos KD, Theoharides TC: Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. Int J Immunopathol Pharmacol 2010, 23:1015-1020.
  • [78]Kempuraj D, Asadi S, Zhang B, Manola A, Hogan J, Peterson E, Theoharides TC: Mercury induces inflammatory mediator release from human mast cells. J Neuroinflammation 2010, 7:20. PMID:20222982
  • [79]Kwon O, Lee E, Moon TC, Jung H, Lin CX, Nam KS, Baek SH, Min HK, Chang HW: Expression of cyclooxygenase-2 and pro-inflammatory cytokines induced by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) in human mast cells requires NF-kappa B activation. Biol Pharm Bull 2002, 25:1165-1168.
  • [80]Viora M, Quaranta MG, Straface E, Vari R, Masella R, Malorni W: Redox imbalance and immune functions: opposite effects of oxidized low-density lipoproteins and N-acetylcysteine. Immunology 2001, 104:431-438.
  • [81]Ingelfinger JR: Prematurity and the legacy of intrauterine stress. N Engl J Med 2007, 356:2093-2095.
  • [82]Joshi SR, Mehendale SS, Dangat KD, Kilari AS, Yadav HR, Taralekar VS: High maternal plasma antioxidant concentrations associated with preterm delivery. Ann Nutr Metab 2008, 53:276-282.
  • [83]Davis JM, Auten RL: Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med 2010, 15:191-195.
  • [84]Perrone S, Tataranno ML, Negro S, Longini M, Marzocchi B, Proietti F, Iacoponi F, Capitani S, Buonocore G: Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev 2010, 86:241-244.
  • [85]Mostafa GA, Kitchener N: Serum anti-nuclear antibodies as a marker of autoimmunity in Egyptian autistic children. Pediatr Neurol 2009, 40:107-112.
  • [86]Lante F, Meunier J, Guiramand J, De Jesus Ferreira MC, Cambonie G, Aimar R, Cohen-Solal C, Maurice T, Vignes M, Barbanel G: Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus 2008, 18:602-609.
  • [87]Paintlia MK, Paintlia AS, Contreras MA, Singh I, Singh AK: Lipopolysaccharide-induced peroxisomal dysfunction exacerbates cerebral white matter injury: attenuation by N-acetyl cysteine. Exp Neurol 2008, 210:560-576.
  • [88]Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 2008, 4:73-84.
  • [89]Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N: Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 2011, 10:43-48.
  • [90]Adams JB, Audhya T, Donough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W: Nutritional and Metabolic Status of Children with Autism vs. Neurotypical Children, and the Association with Autism Severity. Nutr Metab 2011, 8:34. Lond
  • [91]Carvalho CM, Chew EH, Hashemy SI, Lu J, Holmgren A: Inhibition of the human thioredoxin system. A molecular mechanism of mercury toxicity. J Biol Chem 2008, 283:11913-11923.
  • [92]James SJ, Rose S, Melnyk S, Jernigan S, Blossom S, Pavliv O, Gaylor DW: Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 2009, 23(8):2374-83. Epub 2009 Mar 23. PMID:19307255
  • [93]Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML: Timing of prenatal stressors and autism. J Autism Dev Disord 2005, 35:471-478.
  • [94]Kinney DK, Munir KM, Crowley DJ, Miller AM: Prenatal stress and risk for autism. Neurosci Biobehav Rev 2008, 32:1519-1532.
  • [95]Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ: Epigenetic programming by maternal behavior. Nat Neurosci 2004, 7:847-854.
  • [96]Cheslack-Postava K, Liu K, Bearman PS: Closely spaced pregnancies are associated with increased odds of autism in California sibling births. Pediatrics 2011, 127(2):246-253. Epub 2011 Jan 10. PMID:21220394
  • [97]Gillott A, Standen PJ: Levels of anxiety and sources of stress in adults with autism. J Intellect Disabil 2007, 11:359-370.
  • [98]Corbett BA, Schupp CW, Levine S, Mendoza S: Comparing cortisol, stress, and sensory sensitivity in children with autism. Autism Res 2009, 2:39-49.
  • [99]Corbett BA, Schupp CW, Simon D, Ryan N, Mendoza S: Elevated cortisol during play is associated with age and social engagement in children with autism. Mol Autism 2010, 1:13.
  • [100]Chrousos GP: The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995, 332:1351-1362.
  • [101]Campbell EA, Linton EA, Wolfe CD, Scraggs PR, Jones MT, Lowry PJ: Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J Clin Endocrinol Metab 1987, 64:1054-1059.
  • [102]Mancuso RA, Schetter CD, Rini CM, Roesch SC, Hobel CJ: Maternal prenatal anxiety and corticotropin-releasing hormone associated with timing of delivery. Psychosom Med 2004, 66:762-769.
  • [103]Warren WB, Patrick SL, Goland RS: Elevated maternal plasma corticotropin-releasing hormone levels in pregnancies complicated by preterm labor. Am J Obstet Gynecol 1992, 166:1198-1204.
  • [104]Makrigiannakis A, Semmler M, Briese V, Eckerle H, Minas V, Mylonas I, Friese K, Jeschke U: Maternal serum corticotropin-releasing hormone and ACTH levels as predictive markers of premature labor. Int J Gynaecol Obstet 2007, 97:115-119.
  • [105]Grammatopoulos DK: Placental corticotrophin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol 2008, 20:432-438.
  • [106]Torricelli M, Novembri R, Bloise E, De BM, Challis JR, Petraglia F: Changes in placental CRH, urocortins, and CRH-receptor mRNA expression associated with preterm delivery and chorioamnionitis. J Clin Endocrinol Metab 2011, 96:534-540.
  • [107]Kalantaridou S, Makrigiannakis A, Zoumakis E, Chrousos GP: Peripheral corticotropin-releasing hormone is produced in the immune and reproductive systems: actions, potential roles and clinical implications. Front Biosci 2007, 12:572-580.
  • [108]Petraglia F, Garuti GC, De RB, Angioni S, Genazzani AR, Bilezikjian LM: Mechanism of action of interleukin-1 beta in increasing corticotropin-releasing factor and adrenocorticotropin hormone release from cultured human placental cells. Am J Obstet Gynecol 1990, 163:1307-1312.
  • [109]Angioni S, Petraglia F, Gallinelli A, Cossarizza A, Franceschi C, Muscettola M, Genazzani AD, Surico N, Genazzani AR: Corticotropin-releasing hormone modulates cytokines release in cultured human peripheral blood mononuclear cells. Life Sci 1993, 53:1735-1742.
  • [110]Theoharides TC, Konstantinidou A: Corticotropin-releasing hormone and the blood–brain-barrier. Front Biosci 2007, 12:1615-1628.
  • [111]Abbott NJ: Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol 2000, 20:131-147.
  • [112]Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J: Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann N Y Acad Sci 2007, 1107:92-103.
  • [113]Goines P, Van de Water J: The immune system's role in the biology of autism. Curr Opin Neurol 2010, 23:111-117.
  • [114]Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW: Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol 2006, 178:149-155.
  • [115]Vojdani A: Antibodies as predictors of complex autoimmune diseases. Int J Immunopath Pharmacol 2008. in press
  • [116]Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de WJ: Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 2009, 23:64-74.
  • [117]Minagar A, Alexander JS: Blood–brain barrier disruption in multiple sclerosis. Mult Scler 2003, 9:540-549.
  • [118]Soon D, Altmann DR, Fernando KT, Giovannoni G, Barkhof F, Polman CH, O'Connor P, Gray B, Panzara M, Miller DH: A study of subtle blood brain barrier disruption in a placebo-controlled trial of natalizumab in relapsing remitting multiple sclerosis. J Neurol 2007, 254:306-314.
  • [119]Stone LA, Smith ME, Albert PS, Bash CN, Maloni H, Frank JA, McFarland HF: Blood–brain barrier disruption on contrast-enhanced MRI in patients with mild relapsing-remitting multiple sclerosis: Relationship to course, gender, and age. Neurology 1995, 45:1122-1126.
  • [120]Theoharides TC, Cochrane DE: Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 2004, 146:1-12.
  • [121]Esposito P, Chandler N, Kandere-Grzybowska K, Basu S, Jacobson S, Connolly R, Tutor D, Theoharides TC: Corticotropin-releasing hormone (CRH) and brain mast cells regulate blood–brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 2002, 303:1061-1066.
  • [122]Esposito P, Gheorghe D, Kandere K, Pang X, Conally R, Jacobson S, Theoharides TC: Acute stress increases permeability of the blood–brain-barrier through activation of brain mast cells. Brain Res 2001, 888:117-127.
  • [123]Castagliuolo I, Leeman SE, Bartolac-Suki E, Nikulasson S, Qiu B, Carraway RE, Pothoulakis C: A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Proc Natl Acad Sci USA 1996, 93:12611-12615.
  • [124]Pothoulakis C, Castagliuolo I, Leeman SE: Neuroimmune mechanisms of intestinal responses to stress, Role of corticotropin-releasing factor and neurotensin. Ann N Y Acad Sci 1998, 840:635-648.
  • [125]Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P: Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci 2004, 25:563-568.
  • [126]Theoharides TC, Doyle R: Autism, gut-blood–brain barrier and mast cells. J Clin Psychopharmacol 2008, 28:479-483.
  • [127]Theoharides TC, Doyle R, Francis K, Conti P, Kalogeromitros D: Novel therapeutic targets for autism. Trends Pharmacol Sci 2008, 29:375-382.
  • [128]Karalis K, Louis JM, Bae D, Hilderbrand H, Majzoub JA: CRH and the immune system. J Neuroimmunol 1997, 72:131-136.
  • [129]Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassiou A, Theoharides TC: Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 2004, 145:43-48.
  • [130]Slominski A, Wortsman J, Pisarchik A, Zbytek B, Linton EA, Mazurkiewicz JE, Wei ET: Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J 2001, 15:1678-1693.
  • [131]Slominski A, Zbytek B, Zmijewski M, Slominski RM, Kauser S, Wortsman J, Tobin DJ: Corticotropin releasing hormone and the skin. Front Biosci 2006, 11:2230-2248.
  • [132]Skofitsch G, Zamir N, Helke CJ, Savitt JM, Jacobowitz DM: Corticotropin-releasing factor-like immunoreactivity in sensory ganglia and capsaicin sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 1985, 6:307-318.
  • [133]Singh LK, Pang X, Alexacos N, Letourneau R, Theoharides TC: Acute immobilization stress triggers skin mast cell degranulation via corticotropin-releasing hormone, neurotensin and substance P: A link to neurogenic skin disorders. Brain Behav Immunity 1999, 13:225-239.
  • [134]Theoharides TC, Singh LK, Boucher W, Pang X, Letourneau R, Webster E, Chrousos G: Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its pro-inflammatory effects. Endocrinology 1998, 139:403-413.
  • [135]Ito N, Sugawara K, Bodo E, Takigawa M, Van BN, Ito T, Paus R: Corticotropin-releasing hormone stimulates the in situ generation of mast cells from precursors in the human hair follicle mesenchyme. J Invest Dermatol 2010, 130:995-1004.
  • [136]Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC: Brief Report: "Allergic Symptoms" in children with Autism Spectrum Disorders. More than meets the eye 41st edition. 2011, 1579-1585. [J Autism Dev Disord]
  • [137]Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D: Mast cell activation and autism. Biochim Biophys Acta 2012, 1822:34-41.
  • [138]Money J, Bobrow NA, Clarke FC: Autism and autoimmune disease: a family study. J Autism Child Schizophr 1971, 1:146-160.
  • [139]Croen LA, Grether JK, Yoshida CK, Odouli R, Van de WJ: Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: a case–control study. Arch Pediatr Adolesc Med 2005, 159:151-157.
  • [140]Atladottir HO, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, Parner ET: Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 2009, 124:687-694.
  • [141]Keil A, Daniels JL, Forssen U, Hultman C, Cnattingius S, Soderberg KC, Feychting M, Sparen P: Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 2010, 21:805-808.
  • [142]Akin C, Valent P, Metcalfe DD: Mast cell activation syndrome: Proposed diagnostic criteria. J Allergy Clin Immunol 2010, 126(6):104.e4-1099.e4. Epub 2010 Oct 28. PMID:21035176
  • [143]Castells M, Austen KF: Mastocytosis: mediator-related signs and symptoms. Int Arch Allergy Immunol 2002, 127:147-152.
  • [144]Theoharides TC: Autism spectrum disorders and mastocytosis. Int J Immunopathol Pharmacol 2009, 22:859-865.
  • [145]Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK, Kharrazi M, Hansen RL, Ashwood P, Van de WJ: Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry 2008, 64:583-588.
  • [146]Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J: Autism: maternally derived antibodies specific for fetal brain proteins. NeuroToxicol 2008, 29:226-231.
  • [147]Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW: Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol 2008, 194:165-172.
  • [148]Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, Pearce DA: Maternal antibrain antibodies in autism. Brain Behav Immun 2007, 21:351-357.
  • [149]Braunschweig D, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, Hertz-Picciotto I, Van de Water J: Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord 2012, 42(7):1435-1445. PMID:22012245
  • [150]Chess S: Follow-up report on autism in congenital rubella. J Autism Child Schizophr 1977, 7:69-81.
  • [151]Libbey JE, Sweeten TL, McMahon WM, Fujinami RS: Autistic disorder and viral infections. J Neurovirol 2005, 11:1-10.
  • [152]Wilkerson DS, Volpe AG, Dean RS, Titus JB: Perinatal complications as predictors of infantile autism. Int J Neurosci 2002, 112:1085-1098.
  • [153]Chess S: Autism in children with congenital rubella. J Autism Child Schizophr 1971, 1:33-47.
  • [154]Richler J, Luyster R, Risi S, Hsu WL, Dawson G, Bernier R, Dunn M, Hepburn S, Hyman SL, McMahon WM, Goudie-Nice J, Minshew N, Rogers S, Sigman M, Spence MA, Goldberg WA, Tager-Flusberg H, Volkmar FR, Lord C: Is there a 'regressive phenotype' of Autism Spectrum Disorder associated with the measles-mumps-rubella vaccine? A CPEA Study. J Autism Dev Disord 2006, 36:299-316.
  • [155]Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET: Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 2010, 40:1423-1430.
  • [156]Lintas C, Guidi F, Manzi B, Mancini A, Curatolo P, Persico AM: Lack of infection with XMRV or other MLV-related viruses in blood, post-mortem brains and paternal gametes of autistic individuals. PLoS One 2011, 6:e16609.
  • [157]Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, Peterson DL, Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Silverman RH, Mikovits JA: Detection of an Infectious Retrovirus, XMRV, in Blood Cells of Patients with Chronic Fatigue Syndrome. Science 2009, 326(5952):585-589. Epub 2009 Oct 8. Retraction in: Alberts B. Science. 2011 Dec 23;334(6063):1636. Partial retraction in: Silverman RH, Das Gupta J, Lombardi VC, Ruscetti FW, Pfost MA, Hagen KS, Peterson DL, Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Mikovits JA. Science. 2011 Oct 14;334(6053):176
  • [158]Oakes B, Tai AK, Cingöz O, Henefield MH, Levine S, Coffin JM, Huber BT: Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences. Retrovirology 2010, 20(7):109. PMID:21171973
  • [159]Dunn SJ, Greenberg HB, Ward RL, Nakagomi O, Burns JW, Vo PT, Pax KA, Das M, Gowda K, Rao CD: Serotypic and genotypic characterization of human serotype 10 rotaviruses from asymptomatic neonates. J Clin Microbiol 1993, 31:165-169.
  • [160]Enstrom AM, Van de Water JA, Ashwood P: Autoimmunity in autism. Curr Opin Investig Drugs 2009, 10:463-473.
  • [161]Mostafa GA, El-Sayed ZA, El-Aziz MM, El-Sayed MF: Serum anti-myelin-associated glycoprotein antibodies in Egyptian autistic children. J Child Neurol 2008, 23:1413-1418.
  • [162]Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral D, Van de Water J: Autoantibodies in autism spectrum disorders (ASD). Ann N Y Acad Sci 2007, 1107:79-91.
  • [163]Saresella M, Marventano I, Guerini FR, Mancuso R, Ceresa L, Zanzottera M, Rusconi B, Maggioni E, Tinelli C, Clerici M: An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol Psychiatry 2009, 66:978-984.
  • [164]Singh VK, Rivas WH: Prevalence of serum antibodies to caudate nucleus in autistic children. Neurosci Lett 2004, 355:53-56.
  • [165]Singh VK, Warren R, Averett R, Ghaziuddin M: Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol 1997, 17:88-90.
  • [166]Mostafa GA, El-Hadidi ES, Hewedi DH, Abdou MM: Oxidative stress in Egyptian children with autism: relation to autoimmunity. J Neuroimmunol 2010, 219:114-118.
  • [167]Rossi CC, Van de WJ, Rogers SJ, Amaral DG: Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain Behav Immun 2011, 25:1123-1135.
  • [168]Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M: Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 2007, 36:361-365.
  • [169]Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009, 207:111-116.
  • [170]Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57:67-81.
  • [171]Conti P, Pang X, Boucher W, Letourneau R, Reale M, Barbacane RC, Thibault J, Theoharides TC: Impact of Rantes and MCP-1 chemokines on in vivo basophilic mast cell recruitment in rat skin injection model and their role in modifying the protein and mRNA levels for histidine decarboxylase. Blood 1997, 89:4120-4127.
  • [172]Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA, Ozonoff S, Pessah IN, Van de Water JV: Decreased transforming growth factor beta1 in autism: A potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 2008, 204:149-153.
  • [173]Depino AM, Lucchina L, Pitossi F: Early and adult hippocampal TGF-beta1 overexpression have opposite effects on behavior. Brain Behav Immun 2011, 25:1582-1591.
  • [174]Jong EC: Travel-related infections: prevention and treatment. Hosp Pract 1989, 24:145-172.
  • [175]Dommergues MA, Patkai J, Renauld JC, Evrard P, Gressens P: Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 2000, 47:54-63.
  • [176]Forbes EE, Groschwitz K, Abonia JP, Brandt EB, Cohen E, Blanchard C, Ahrens R, Seidu L, McKenzie A, Strait R, Finkelman FD, Foster PS, Matthaei KI, Rothenberg ME, Hogan SP: IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med 2008, 205:897-913.
  • [177]Sismanopoulos N, Delivanis DA, Alysandratos KD, Angelidou A, Vasiadi M, Therianou A, Theoharides TC: IL-9 induces VEGF secretion from human mast cells and IL-9/IL-9 receptor genes are overexpressed in atopic dermatitis. PLoS One 2012, 7(3):e33271.
  • [178]Gebhardt T, Lorentz A, Detmer F, Trautwein C, Bektas H, Manns MP, Bischoff SC: Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor beta1. Gut 2005, 54:928-934.
  • [179]Ashwood P, Nguyen DV, Hessl D, Hagerman RJ, Tassone F: Plasma cytokine profiles in Fragile X subjects: is there a role for cytokines in the pathogenesis? Brain Behav Immun 2010, 24(6):898-902.
  • [180]Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Court , Altaye M, Wills-Karp M: Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 2006, 172:198-205.
  • [181]Angelidou A, Francis K, Vasiadi M, Alysandratos K-D, Zhang B, Theoharides A, Lykouras L, Kalogeromitros D, Theoharides T: Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation 2010, 7:48.
  • [182]Carraway R, Cochrane DE, Lansman JB, Leeman SE, Paterson BM, Welch HJ: Neurotensin stimulates exocytotic histamine secretion from rat mast cells and elevates plasma histamine levels. J Physiol 1982, 323:403-414.
  • [183]Zhang B, Angelidou A, Alysandratos KD, Vasiadi M, Francis K, Asadi S, Theoharides A, Theoharides TC, Sideri K, Lykouras L, Kalogeromitros D: Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J Neuroinflammation 2010, 7:80.
  • [184]Gulubova M, Vlaykova T: Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 2009, 24:1265-1275.
  • [185]Cao J, Papadopoulou N, Kempuraj D, Boucher WS, Sugimoto K, Cetrulo CL, Theoharides TC: Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol 2005, 174:7665-7675.
  • [186]Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN: Mitochondrial dysfunction in autism. JAMA 2010, 304:2389-2396.
  • [187]Palmieri L, Persico AM: Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim Biophys Acta 2010, 1797:1130-1137.
  • [188]Youle RJ, Karbowski M: Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005, 6:657-663.
  • [189]Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ: Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 1997, 68:2227-2240.
  • [190]Zhang B, Alysandratos KD, Angelidou A, Asadi S, Sismanopoulos N, Delivanis DA, Weng Z, Miniati A, Vasiadi M, Katsarou-Katsari A, Miao B, Leeman SE, Kalogeromitros D, Theoharides TC: Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J Allergy Clin Immunol 2011, 127(6):31.e8-1522.e8. Epub 2011 Mar 31. PMID:21453958
  • [191]Zhang B, Weng Z, Sismanopoulos N, Asadi S, Therianou A, Alysandratos KD, Angelidou A, Shirihai O, Theoharides TC: Mitochondria Distinguish Granule-Stored from de novo Synthesized Tumor Necrosis Factor Secretion in Human Mast Cells. Int Arch Allergy Immunol 2012, 159(1):23-32. [Epub ahead of print] PMID:22555146
  • [192]Blank U, Rivera J: The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 2004, 25:266-273.
  • [193]Kraft S, Kinet JP: New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 2007, 7:365-378.
  • [194]Schroeder JT, Kagey-Sobotka A, MacGlashan DW, Lichtenstein LM: The interaction of cytokines with human basophils and mast cells. Int Arch Allergy Immunol 1995, 107:79-81.
  • [195]Schwartz LB: Mediators of human mast cells and human mast cell subsets. Ann Allergy 1987, 58:226-235.
  • [196]Serafin WE, Austen KF: Mediators of immediate hypersensitivity reactions. N Engl J Med 1987, 317:30-34.
  • [197]Torigoe C, Goldstein B, Wofsy C, Metzger H: Shuttling of initiating kinase between discrete aggregates of the high affinity receptor for IgE regulates the cellular response. Proc Natl Acad Sci U S A 1997, 94:1372-1377.
  • [198]Theoharides TC, Kempuraj D, Tagen M, Conti P, Kalogeromitros D: Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 2007, 217:65-78.
  • [199]Lee JY, Huerta PT, Zhang J, Kowal C, Bertini E, Volpe BT, Diamond B: Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat Med 2009, 15:91-96.
  • [200]Boksa P: Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010, 24:881-897.
  • [201]O'Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG: Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009, 65:263-267.
  • [202]Chandler N, Jacobson S, Connolly R, Esposito P, Theoharides TC: Acute stress shortens the time of onset of experimental allergic encephalomyelitis (EAE) in SJL/J mice. Brain Behav Immun 2002, 16:757-763.
  • [203]Teunis MA, Heijnen CJ, Sluyter F, Bakker JM, Van Dam AM, Hof M, Cools AR, Kavelaars A: Maternal deprivation of rat pups increases clinical symptoms of experimental autoimmune encephalomyelitis at adult age. J Neuroimmunol 2002, 133:30-38.
  • [204]Soderholm JD, Yates DA, Gareau MG, Yang PC, MacQueen G, Perdue MH: Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol 2002, 283:G1257-G1263.
  • [205]Smith SE, Li J, Garbett K, Mirnics K, Patterson PH: Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007, 27:10695-10702.
  • [206]Kandere-Grzybowska K, Kempuraj D, Letourneau L, Asare A, Athanasiou A, Theoharides TC: IL-1 induces differential release of IL-6 form human mast cells. FASEB J 2002., 16(332) A
  • [207]Girard S, Tremblay L, Lepage M, Sebire G: IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. J Immunol 2010, 184:3997-4005.
  • [208]Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD: Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 2004, 114:174-182.
  • [209]Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M: Mast cells as "tunable" effector and immunoregulatory cells: recent advances. Annu Rev Immunol 2005, 23:749-786.
  • [210]Galli SJ, Tsai M, Piliponsky AM: The development of allergic inflammation. Nature 2008, 454:445-454.
  • [211]Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D: Mast cells and inflammation. Biochim Biophys Acta 2010, 1822:21-33.
  • [212]Theoharides TC, Kalogeromitros D: The critical role of mast cell in allergy and inflammation. Ann NY Acad Sci 2006, 1088:78-99.
  • [213]Liu J, Divoux A, Sun J, Zhang J, Clement K, Glickman JN, Sukhova GK, Wolters PJ, Du J, Gorgun CZ, Doria A, Libby P, Blumberg RS, Kahn BB, Hotamisligil GS, Shi GP: Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 2009, 15:940-945.
  • [214]Middleton E Jr, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol Rev 2000, 52:673-751.
  • [215]Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo CL, Theoharides TC: Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 2005, 145:934-944.
  • [216]Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, Moehle C, Fuchshofer R, Langmann T: Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 2010, 7:3.
  • [217]Jang S, Kelley KW, Johnson RW: Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci U S A 2008, 9(21):7534. Epub 2008 May 19. PMID: 18490655
  • [218]Theoharides TC, Asadi S, Panagiotidou S: A case series of a luteolin formulation (NeuroProtekâ) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 2012, 25(2):317-323. PMID:22697063
  文献评价指标  
  下载次数:7次 浏览次数:41次